38 research outputs found

    Empowerment and Parent Gain as Mediators and Moderators of Distress in Mothers of Children with Autism Spectrum Disorders

    Get PDF
    Mothers of children with Autism Spectrum Disorders (ASD) experience considerable amounts of distress and experiences of crisis. The Family Adjustment and Adaptation Response model provides a theory for understanding the experience of distress and family crisis in families, and the purpose of the present study was to examine experiences of distress in mothers of individuals with ASD using this framework. We specifically investigated how parent empowerment and positive gain are related to their experiences of distress, whether as mediators or as moderators of child aggression. Participants included 156 mothers of children with ASD ranging in age from 4 – 21 years. Mothers completed an online survey of demographics, problem behaviors, family empowerment, positive gain, and distress. We conducted path analyses of multiple mediation and moderation. Results indicated that greater child problem behavior was related to less parent empowerment, which was related to greater maternal distress, supporting empowerment as a partial mediator. At the same time, greater child aggression was not related to maternal distress in mothers who report high rates of positive gain, suggesting that parent gain functions as a moderator. The implications for how and when clinicians intervene with families of children with ASD are discussed

    PS Integrins and Laminins: Key Regulators of Cell Migration during Drosophila Embryogenesis

    Get PDF
    During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that αPS1βPS (PS1) and/or αPS3βPS (PS3) integrins are required in migrating cells, whereas αPS2βPS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin α1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration

    The Majorana Demonstrator radioassay program

    Get PDF
    The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting, neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. We interpret these numbers in the context of the expected background for the experiment. 7

    Background Model for the Majorana Demonstrator

    Get PDF
    AbstractThe Majorana Collaboration is constructing a system containing 40kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements
    corecore