2,202 research outputs found

    Peak expiratory flow mediates the relationship between handgrip strength and timed up and go performance in elderly women, but not men

    Get PDF
    OBJECTIVE: The aim of the present study was to verify if there is sex difference in the associations among handgrip strength, peak expiratory flow (PEF) and timed up and go (TUG) test results. METHODS: The sample included 288 consecutive elderly men (n=93) and women (n=195). Functional capacity was measured using the TUG test, and muscle strength was measured based on handgrip. Moreover, as a measure of current health status, PEF was evaluated. Linear regression procedures were performed to analyze the relationships between handgrip and both PEF and TUG test results, with adjustment for confounders, and to identify the possible mediating role of PEF in the association between handgrip strength and TUG test results. RESULTS: In men, handgrip strength was associated with both PEF and TUG performance (p<0.01). After adjustment for PEF, the relationship between handgrip strength and TUG performance remained significant. In women, handgrip strength was also associated with both PEF and TUG performance (p<0.01). However, after adjustment for PEF, the relationship between handgrip strength and TUG performance was no longer significant. CONCLUSION: Mobility in the elderly is sex dependent. In particular, PEF mediates the relationship between handgrip strength and TUG performance in women, but not in men

    Phage inducible islands in the gram-positive cocci

    Get PDF
    The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Combinatorial Clustering of Residue Position Subsets Predicts Inhibitor Affinity across the Human Kinome

    Get PDF
    The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (CCORPS) method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, CCORPS is applied to the problem of identifying structural features of the kinase ATP binding site that are informative of inhibitor binding. CCORPS is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, CCORPS is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors

    Resilience Analysis of Service Oriented Collaboration Process Management systems

    Get PDF
    Collaborative business process management allows for the automated coordination of processes involving human and computer actors. In modern economies it is increasingly needed for this coordination to be not only within organizations but also to cross organizational boundaries. The dependence on the performance of other organizations should however be limited, and the control over the own processes is required from a competitiveness perspective. The main objective of this work is to propose an evaluation model for measuring a resilience of a Service Oriented Architecture (SOA) collaborative process management system. In this paper, we have proposed resilience analysis perspectives of SOA collaborative process systems, i.e. overall system perspective, individual process model perspective, individual process instance perspective, service perspective, and resource perspective. A collaborative incident and maintenance notification process system is reviewed for illustrating our resilience analysis. This research contributes to extend SOA collaborative business process management systems with resilience support, not only looking at quantification and identification of resilience factors, but also considering ways of improving the resilience of SOA collaborative process systems through measures at design and run-time

    Total antioxidant activity and trace elements in human milk: the first 4 months of breast-feeding

    Get PDF
    The content of many nutrients in breast milk are dependent on the nutritional status of the lactating woman. This is particularly true for fat and water-soluble vitamins, some of which have antioxidant properties. The aim of the study entertained herein was to evaluate the changes in total antioxidant status of human milk during the first 4 months of lactation, and to correlate such changes with the contents in specific antioxidant oligoelements (Cu, Zn, Mn and Se). Milk samples were collected from (31) lactating women recruited at the Service of Obstetrics of the Hospital de São João in Porto, after 1, 4, 8, 12 and 16 weeks after birth. The total antioxidant status (TAS) of human milk was measured by the Randox® commercial kit and trace metals by ICP-MS (inductively coupled plasma-mass spectrometry). The results found for TAS and oligoelements under study show a decrease in the concentration of these parameters from 7 days to 4 months of breast-feeding and significant correlations (p < 0.05) were found between TAS and Cu, Zn and Se (not Mn). The decreases of Cu, Zn and Se were also correlated, but not proportional between them, suggesting diverse excretion mechanisms for all. Between primipara and multipara women, a significant difference was found only for Cu and Zn concentrations at 7 days of lactation, but not for the other metals or TAS. With respect to the mother’s age, no correlation was found, either for trace metal concentrations or TAS
    corecore