317 research outputs found

    STC1 and PTHrP modify carbohydrate and lipid metabolism in liver of a teleost fish

    Get PDF
    Stanniocalcin 1 (STC1) and parathyroid hormone-related protein (PTHrP) are calciotropic hormones in vertebrates. Here, a recently hypothesized metabolic role for these hormones is tested on European sea bass treated with: (i) teleost PTHrP(1-34), (ii) PTHrP(1-34) and anti-STC1 serum (pro-PTHrP groups), (iii) a PTHrP antagonist PTHrP(7-34) or (iv) PTHrP(7-34) and STC1 (pro-STC1 groups). Livers were analysed using untargeted metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectroscopy. Concentrations of branched-chain amino acid (BCAA), alanine, glutamine and glutamate increased in pro-STC1 groups suggesting their mobilization from the muscle to the liver for degradation and gluconeogenesis from alanine and glutamine. In addition, only STC1 treatment decreased the concentrations of succinate, fumarate and acetate, indicating slowing of the citric acid cycle. In the pro-PTHrP groups the concentrations of glucose, erythritol and lactate decreased, indicative of gluconeogenesis from lactate. Taurine, trimethylamine, trimethylamine N-oxide and carnitine changed in opposite directions in the pro-STC1 versus the pro-PTHrP groups, suggesting opposite effects, with STC1 stimulating lipogenesis and PTHrP activating lipolysis/β-oxidation of fatty acids. These findings suggest a role for STC1 and PTHrP related to strategic energy mechanisms that involve the production of glucose and safeguard of liver glycogen reserves for stressful situations.Portuguese Foundation for Science and Technology (FCT) SFRH/BD/103185/2014info:eu-repo/semantics/publishedVersio

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Evaluation of urinary cysteinyl leukotrienes as biomarkers of severity and putative therapeutic targets in COVID-19 patients

    Get PDF
    Background Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. Methods Blood and spot urine were collected in severe (n = 26), critically ill (n = 17) and critically ill on VV-ECMO (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. Results U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. Conclusions U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.This work was supported by a RESEARCH 4 COVID-19 grant (project 519, reference number: 613690173) from FCT-Fundacao para a Ciencia e a Tecnologia (special support for rapid implementation projects for innovative response solutions to COVID-9 pandemic). CS-P is a recipient of a Ph.D. fellowship from FCT and MedInUP (UI/BD/150816/2020). P-PT was supported by a research contract within the scope of the RIFF-HEART project funded by FEDER via COMPETE, Portugal 2020-Operational Programme for Competitiveness and Internationalization (POCI) (POCI-01-0145-FEDER-032188) and by FCT (PTDC/MEC-CAR/32188/2017). Open access funding provided by FCT|FCCN (b-on)

    Clear Cell "Sugar" Tumor of the Lung: A Well-Enhanced Mass with an Early Washout Pattern on Dynamic Contrast-Enhanced Computed Tomography

    Get PDF
    Clear cell tumor of the lung is a rare and very unusual benign pulmonary tumor. As clear cell tumor of the lung contains abundant cytoplasmic glycogen, this tumor is called "sugar tumor". We report a case of sugar tumor in a 64-yr-old man presenting as a round pulmonary nodule. On dynamic computed tomography (CT) scans, the solitary pulmonary nodule showed early wash-in enhancement with an early washout pattern like a lung malignancy. The patient underwent wedge resection for the tumor. Pathologic examination, including immunohistochemical studies, revealed that the nodule was a benign clear cell tumor, so-called "sugar tumor". Because only a small number of cases have been reported previously, clinical aspects, radiological characteristics on dynamic contrast-enhanced CT, and differential diagnosis of the tumor are not well established. Herein we present a clear cell tumor of the lung and discuss the clinical, radiological, and pathological features of the tumor

    Proteolytic Processing of Nlrp1b Is Required for Inflammasome Activity

    Get PDF
    Nlrp1b is a NOD-like receptor that detects the catalytic activity of anthrax lethal toxin and subsequently co-oligomerizes into a pro-caspase-1 activation platform known as an inflammasome. Nlrp1b has two domains that promote oligomerization: a NACHT domain, which is a member of the AAA+ ATPase family, and a poorly characterized Function to Find Domain (FIIND). Here we demonstrate that proteolytic processing within the FIIND generates N-terminal and C-terminal cleavage products of Nlrp1b that remain associated in both the auto-inhibited state and in the activated state after cells have been treated with lethal toxin. Functional significance of cleavage was suggested by the finding that mutations that block processing of Nlrp1b also prevent the ability of Nlrp1b to activate pro-caspase-1. By using an uncleaved mutant of Nlrp1b, we established the importance of cleavage by inserting a heterologous TEV protease site into the FIIND and demonstrating that TEV protease processed this site and induced inflammasome activity. Proteolysis of Nlrp1b was shown to be required for the assembly of a functional inflammasome: a mutation within the FIIND that abolished cleavage had no effect on self-association of a FIIND-CARD fragment, but did reduce the recruitment of pro-caspase-1. Our work indicates that a post-translational modification enables Nlrp1b to function
    corecore