5,667 research outputs found

    Turbulence In the Outer Regions of Protoplanetary Disks. II. Strong Accretion Driven by a Vertical Magnetic Field

    Full text link
    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30AU and 100AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-UV-ionized surface layer and low-ionization disk interior. These simulations serve as a follow up to Simon et al. (2013), in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For gas to magnetic pressure ratios of 1e4 and 1e5, we find accretion rates between 1e-8 and 1e-7 solar masses per year. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength between 60 and 200 microgauss at 30AU and 10 and 30 microgauss at 100AU in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there.Comment: accepted to ApJ after very minor revision

    Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    Full text link
    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations with the Athena code. First, we use a series of unstratified simulations to calibrate physical dissipation as a function of resolution and background field strength; the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. Large scale radial and toroidal fields are also generated near the mid-plane and subsequently rise through the disk. The polarity of this mean field switches on a roughly 10 orbit period in a process that is well-modeled by an alpha-omega dynamo. Turbulent stress increases with Pm but with a shallower dependence compared to unstratified simulations. For sufficiently large resistivity, on the order of cs H/1000, where cs is the sound speed, MRI turbulence within 2 H of the mid-plane undergoes periods of resistive decay followed by regrowth. This regrowth is caused by amplification of toroidal field via the dynamo. This process results in large amplitude variability in the stress on 10 to 100 orbital timescales, which may have relevance for partially ionized disks that are observed to have high and low accretion states.Comment: very minor changes, accepted to Ap

    Species–area relationships always overestimate extinction rates from habitat loss : comment

    Get PDF
    Author Posting. © Ecological Society of America, 2013. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 94 (2013): 761–763, doi:10.1890/12-0047.1.The species–area relationship summarizes the relationship between the average number of species in a region and its area. This relationship provides a basis for predicting the loss of species associated with loss of habitat (e.g., Pimm and Raven 2000). The approach involves two steps. First, as discussed in more detail below, the species–area relationship is used to predict the number of species that are endemic to the habitat at risk based on its area. Second, these endemic species are assumed to become extinct should this habitat be lost. In a controversial paper, He and Hubbell (2011) argued that the way in which the species–area relationship is used to predict the number of endemic species is incorrect when individual organisms are aggregated in space and argued that this explains a discrepancy between predicted and observed extinction rates associated with habitat loss. The controversy surrounding the paper focused primarily on the second part of their argument (Brooks 2011, Evans et al. 2011, He and Hubbell 2012, Pereira et al. 2012, Thomas and Williamson 2012). Here, we focus on the details underlying the first part.U. Roll is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. L. Stone is supported by the Israeli Science Foundation

    Integrating Emerging Areas of Nursing Science into PhD Programs

    Get PDF
    The Council for the Advancement of Nursing Science aims to “facilitate and recognize life-long nursing science career development” as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement “The Research-Focused Doctoral Program in Nursing: Pathways to Excellence,” Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing

    Viscous and Resistive Effects on the MRI with a Net Toroidal Field

    Full text link
    Resistivity and viscosity have a significant role in establishing the energy levels in turbulence driven by the magnetorotational instability (MRI) in local astrophysical disk models. This study uses the Athena code to characterize the effects of a constant shear viscosity \nu and Ohmic resistivity \eta in unstratified shearing box simulations with a net toroidal magnetic flux. A previous study of shearing boxes with zero net magnetic field performed with the ZEUS code found that turbulence dies out for values of the magnetic Prandtl number, P_m = \nu/\eta, below P_m \sim 1; for P_m \gtrsim 1, time- and volume-averaged stress levels increase with P_m. We repeat these experiments with Athena and obtain consistent results. Next, the influence of viscosity and resistivity on the toroidal field MRI is investigated both for linear growth and for fully-developed turbulence. In the linear regime, a sufficiently large \nu or \eta can prevent MRI growth; P_m itself has little direct influence on growth from linear perturbations. By applying a range of values for \nu and \eta to an initial state consisting of fully developed turbulence in the presence of a background toroidal field, we investigate their effects in the fully nonlinear system. Here, increased viscosity enhances the turbulence, and the turbulence decays only if the resistivity is above a critical value; turbulence can be sustained even when P_m < 1, in contrast to the zero net field model. While we find preliminary evidence that the stress converges to a small range of values when \nu and \eta become small enough, the influence of dissipation terms on MRI-driven turbulence for relatively large \eta and \nu is significant, independent of field geometry.Comment: Accepted to ApJ; version 2 - minor changes following review; 35 pages (preprint format), 10 figure

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ
    corecore