979 research outputs found

    Monotone iterative procedure and systems of a finite number of nonlinear fractional differential equations

    Get PDF
    The aim of the paper is to present a nontrivial and natural extension of the comparison result and the monotone iterative procedure based on upper and lower solutions, which were recently established in (Wang et al. in Appl. Math. Lett. 25:1019-1024, 2012), to the case of any finite number of nonlinear fractional differential equations.The author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This article was financially supported by University of Łódź as a part of donation for the research activities aimed at the development of young scientists, grant no. 545/1117

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Using fibrincollagen composite hydrogel and silk for bio-inspired design of tympanic membrane grafts: a vibro-acoustic analysis

    Get PDF
    Tympanic membrane (TM) is vulnerable to a variety of middle ear diseases. In some cases, reconstruction or repair of the TM is essential for recovering the hearing. Although there are many kinds of materials and therapeutics for TM reconstruction, tissue engineering of the TM is still in its initial steps of advancement. Treatment of damaged TM is usually carried out by otology-related techniques such as myringoplasty and tympanoplasty. Most of the novel tympanoplasty methods employ artificial grafts made of biomaterials and polymers for scaffolds. One biomaterial candidate for design and fabrication of synthetic grafts is spider silk, which has excellent mechanical and acoustic characteristics. On the other hand, the structural function of the spider web is also one of the potential inspirations for designing tissue-engineered grafts on micro-scale explorations. In this study, a bio-inspired design and analysis of silky TM grafts are carried out employing finite element modeling and vibro-acoustic investigation. A comparative and statistical analysis is also performed with experimentally validated data to check the suitability of the materials and design. The numerical study shows that the proposed bio-inspired models are appropriate for TM graft design and fabrication. The effects of inspired architecture and materials on obtaining an optimum design for TM grafts are put into evidence via a parametric study, and pertinent conclusions are outlined

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe

    A Chaotic Quadratic Oscillator with Only Squared Terms: Multistability, Impulsive Control, and Circuit Design

    Get PDF
    Here, a chaotic quadratic oscillator with only squared terms is proposed, which shows various dynamics. The oscillator has eight equilibrium points, and none of them is stable. Various bifurcation diagrams of the oscillator are investigated, and its Lyapunov exponents (LEs) are discussed. The multistability of the oscillator is discussed by plotting bifurcation diagrams with various initiation methods. The basin of attraction of the oscillator is discussed in two planes. Impulsive control is applied to the oscillator to control its chaotic dynamics. Additionally, the circuit is implemented to reveal its feasibility

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Honey, a Gift from Nature to Health and Beauty: A Review

    Get PDF
    Benefits of honey are contributed by the composition of its elements such as glucose, fructose, glucose oxidase, vitamins and phenolic compounds. For health, honey can be used to treat wounds due to the antibacterial activity conferred by the hydrogen peroxide produced by glucose oxidase in honey. Anti-inflammatory, anti-oxidant, deodorizing and tissue regeneration activities in honey also help in the wound healing process. It can also be an alternative sweetener for diabetic patients to ensure compliance to a healthy diet. Moreover, honey exerts several effects such as lowering low density lipids and increasing high density lipids, thus reducing risk of atherosclerosis. In terms of beauty, honey can be used on skin and hair. It moisturizes skin through its natural humectant properties contributed by high contents of fructose and glucose. Honey treats acne on the skin due to its antibacterial activity, anti-inflammatory action and tissue repair. The hair can benefit from honey in such a way that the hair has abundance, and becomes easier to comb. However, there have not been as many studies regarding the use of honey in skin in comparison to its use for health. Therefore, future studies on honey could research its use, action and benefits in both cosmetics and dermatology

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    corecore