314 research outputs found

    Covering behavior of deep-water echinoids in Antarctica: possible response to predatory king crabs

    Get PDF
    This is the final version of the article. Available from Inter Research via the DOI in this record.Covering behavior refers to the propensity of echinoids (Echinoidea) to lift materials from the surrounding environment onto their aboral surfaces using their tube feet and spines. This behavior has been widely documented in regular echinoids from a variety of well-lit, shallow-marine habitats. Covering behavior in the deep sea, however, is rarely observed, and the functional significance of covering when it does occur remains speculative. During a photographic survey of the seafloor off Anvers Island and Marguerite Bay along the western Antarctic Peninsula, we imaged 11 benthic transects at depths ranging from 390 to 2100 m. We recorded the number of echinoid species, incidence of covering behavior, types of materials used for covering, potential predators of echinoids, and potential prey items for predators. The echinoid Sterechinus spp. was found at all depths, and the percentage of individuals exhibiting covering behavior increased with depth between 390 and 1500 m. There was a significant positive correlation between the incidence of covering behavior in Sterechinus spp. and the density of king crabs (Anomura: Lithodidae), crushing predators that may be expanding their bathymetric range up the Antarctic continental slope as a consequence of ongoing climatic warming. In contrast, covering behavior was not positively correlated with the densities of non-crab predators, the total densities of predators, or the availability of prey. Our results document rarely observed covering behavior in echinoids living in the deep sea and suggest that covering could be a behavioral response to predation pressure by king crabs.We thank the crew of the RV ‘Nathaniel B. Palmer’ during the NBP13-10 cruise for logistical help, as well as J. S. Anderson, A. Brown, C. Easson, D. Ellis, S. Thatje, and S. C. Vos. Thanks also to Paul Dayton as well as 2 anonymous reviewers who offered constructive comments and suggestions. Funding was provided by grants from the US National Science Foundation to R.B.A. (ANT- 1141877) and J.B.M. (ANT-1141896). This paper is contribution no. 160 from the Institute for Research on Global Climate Change at the Florida Institute of Technology

    Discovery of a recent, natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Whale falls provide a substantial, nutrient-rich resource for species in areas of the ocean that may otherwise be largely devoid of food. We report the discovery of a natural whale fall at 1430 m depth in the cold waters of the continental slope off the western Antarctic Peninsula. This is the highest-latitude whale fall reported to date. The section of the carcass we observed—the tail fluke—was more complete than any previously reported natural whale fall from the deep sea and in the early stages of decomposition. We estimate the entire cetacean to measure 5–8 m in length. The flesh remained almost intact on the carcass but the skin was missing from the entire section except for the end of the fluke, clearly exposing blubber and soft tissue. The absence of skin indicates rapid and Homogeneous loss. The dominant macrofauna present were crustaceans, including most prominently the lithodid crab Paralomis birsteini, and zoarcid fish typical of the ‘mobile-scavenger’ successional stage. The density of mobile macrofauna was greatest on the carcass and declined to background levels within 100 m, indicating that they were attracted to the whale fall. This whale fall offers an important opportunity to examine the decomposition of a carcass under deep-sea conditions at polar latitudes.We are grateful to the captain and crew of the RV Nathaniel B. Palmer, and to the US Antarctic Support Contractor, Lockheed Martin, for their assistance at sea. We thank J.T. Eastman and two anonymous reviewers for helpful comments on the manuscript. Funding was provided by grants from the U.S. National Science Foundation: ANT-1141877 to R.B.A. and ANT-1141896 to J.B.M. This is contribution 122 from the Institute for Research on Global Climate Change at the Florida Institute of Technology

    Anti‑predatory chemical defences in Antarctic benthic fauna

    Get PDF
    Antarctic benthic communities are largely structured by predation, which leads to the development of mechanisms of repellence. Among those mechanisms, chemical defences are quite extensive, yet poorly understood. To increase knowledge about the role of chemical defences in the Southern Ocean ecosystems, we assessed the incidence of feeding repellents in sessile and vagile invertebrates from nine phyla: Porifera, Cnidaria, Nemertea, Annelida, Mollusca, Bryozoa, Echinodermata, Hemichordata, and Tunicata (Ascidiacea). Samples were collected at depths of 120–789 m in the eastern Weddell Sea and Bouvet Island, and at depths ranging 0–100 m in the South Shetland Islands. When possible, specimens were dissected to study anatomical allocation of repellents. The common, eurybathic sea star Odontaster validus was chosen to perform feeding repellence bioassays, using diethyl ether (lipophilic) and butanol (hydrophilic) extracts from these samples. Among the 75 species tested, 52 % were studied for the first time for anti-predatory properties. Results provide further evidence of the prevalence of defensive metabolites in Antarctic organisms, with 47 % of the species exhibiting significant repellence within their lipophilic extracts. They also suggest a wider use of nonpolar defensive chemicals. Sessile taxa displayed highest repellence activities, with ascidians, cnidarians, and sponges being the most chemically protected. Overall, the present study indicates that natural products by mediating trophic interactions between prey and their potential predators play an important role in structuring Antarctic benthic ecosystems.Versión del editor2,011

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Biology of the king crab Paralomis birsteini on the continental slope off the western Antarctic Peninsula

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Predatory king crabs (Lithodidae) structure benthic communities in their native habitats and cause shifts in the composition of benthic assemblages when introduced to new environments. Cold temperatures have apparently excluded skeleton-breaking predators from the continental shelf around Antarctica for millions of years, but recent increases in sea temperatures off the western Antarctic Peninsula (WAP) may be allowing lithodids to return. Imaging surveys have revealed dense populations of the lithodid Paralomis birsteini (Macpherson 1988) living on the continental slope off the WAP, but the biology of these populations remains poorly understood. We collected 51 adult P. birsteini in a trapping study on the slope off Marguerite Bay, WAP from depths of 1200–1400 m. Of the 51 crabs, 42 were males and 9 were females. Four females were ovigerous, carrying eggs at various stages of development. Rates of parasitism and limb regeneration were comparable to populations of lithodids elsewhere in the world, although the proportion of limb loss was relatively high. Externa of the parasite Briarosaccus callosus was obvious in both males and females, with one individual bearing hyperparasites (probably Liriopsis pygmaea). Gill necrosis was also observed in several dissected males. The success of contemporary lithodid populations on the Antarctic slope suggests they have the potential to expand upward to the continental shelf.Our research was supported by the U.S. National Science Foundation under grants ANT-1141877 to R.B.A. and ANT-1141896 to J.B.M. Additional support derived from an Endowed Professorship in Polar and Marine Biology from the University of Alabama at Birmingham, held by J.B.M. This is contribution no. 189 from the Institute for Research on Global Climate Change at the Florida Institute of Technology

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    From deep to shallow seas: Antarctic king crab on the move

    Get PDF
    The fauna of decapod crustaceans in the Southern Ocean has historically been considered impoverished, with only about a dozen species of decapod shrimp overall, of which only three species are common and abundant on the Antarctic continental shelf. Crabs and lobsters were assumed to be absent or very rare in the Southern Ocean, mainly ascribed to the physiological constraint of cold polar waters. Polar temperatures have been hypothesised to reduce decapod activity, especially in combination with high magnesium levels in the haemolymph ([Mg2+]HL), as [Mg2+] has a relaxant effect. Mg2+ is abundant in seawater and in combination with polar temperatures causes relaxant effect in Crustacea (Frederich et al., 2001). Since most crabs are capable of regulating [Mg2+]HL only slightly below the [Mg2+] of seawater, their ability to maintain activity should be hampered (Frederich et al., 2001, Aronson et al. 2015a)

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Numerical Simulations of Void Linkage in Model Materials using a Nonlocal Ductile Damage Approximation

    Full text link
    Experiments on the growth and linkage of 10 μm diameter holes laser drilled in high precision patterns into Al-plates were modelled with finite elements. The simulations used geometries identical to those of the experiments and incorporated ductile damage by element removal under the control of a ductile damage indicator based on the micromechanical studies of Rice and Tracey. A regularization of the problem was achieved through an integral-type nonlocal model based on the smoothing of the rate of a damage indicator D over a characteristic length L. The simulation does not predict the experimentally observed damage acceleration either in the case where no damage is included or when only a local damage model is used. However, the full three-dimensional simulations based on the nonlocal damage methodology do predict both the failure path and the failure strain at void linkage for almost all configurations studied. For the cases considered the critical parameter controlling the local deformations at void linkage was found to be the ratio between hole diameter and hole spacing
    corecore