182 research outputs found
Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars
in close binary systems. They play an important role as cosmological distance
indicators and have led to the discovery of the accelerated expansion of the
Universe. Among the most important unsolved questions are how the explosion
actually proceeds and whether accretion occurs from a companion or via the
merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is
thought to be one of the best candidates for a SN Ia in the Milky Way. The
proximity of the SN 1572 remnant has allowed detailed studies, such as the
possible identification of the binary companion, and provides a unique
opportunity to test theories of the explosion mechanism and the nature of the
progenitor. The determination of the yet unknown exact spectroscopic type of SN
1572 is crucial to relate these results to the diverse population of SNe Ia.
Here we report an optical spectrum of Tycho Brahe's supernova near maximum
brightness, obtained from a scattered-light echo more than four centuries after
the direct light of the explosion swept past Earth. We find that SN 1572
belongs to the majority class of normal SNe Ia. The presence of a strong Ca II
IR feature at velocities exceeding 20,000 km/s, which is similar to the
previously observed polarized features in other SNe Ia, suggests asphericity in
SN 1572.Comment: 15 pages, 3 figures - accepted for publication in Natur
Incompressible Fluids of the de Sitter Horizon and Beyond
There are (at least) two surfaces of particular interest in eternal de Sitter
space. One is the timelike hypersurface constituting the lab wall of a static
patch observer and the other is the future boundary of global de Sitter space.
We study both linear and non-linear deformations of four-dimensional de Sitter
space which obey the Einstein equation. Our deformations leave the induced
conformal metric and trace of the extrinsic curvature unchanged for a fixed
hypersurface. This hypersurface is either timelike within the static patch or
spacelike in the future diamond. We require the deformations to be regular at
the future horizon of the static patch observer. For linearized perturbations
in the future diamond, this corresponds to imposing incoming flux solely from
the future horizon of a single static patch observer. When the slices are
arbitrarily close to the cosmological horizon, the finite deformations are
characterized by solutions to the incompressible Navier-Stokes equation for
both spacelike and timelike hypersurfaces. We then study, at the level of
linearized gravity, the change in the discrete dispersion relation as we push
the timelike hypersurface toward the worldline of the static patch. Finally, we
study the spectrum of linearized solutions as the spacelike slices are pushed
to future infinity and relate our calculations to analogous ones in the context
of massless topological black holes in AdS.Comment: 27 pages, 8 figure
Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations
Classical conformal blocks naturally appear in the large central charge limit
of 2D Virasoro conformal blocks. In the correspondence, they
are related to classical bulk actions and are used to calculate entanglement
entropy and geodesic lengths. In this work, we discuss the identification of
classical conformal blocks and the Painlev\'e VI action showing how
isomonodromic deformations naturally appear in this context. We recover the
accessory parameter expansion of Heun's equation from the isomonodromic
-function. We also discuss how the expansion of the
-function leads to a novel approach to calculate the 4-point classical
conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli
space and monodromies, numerical and analytic checks; v2: added refs, fixed
emai
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Bulk viscous cosmological model with interacting dark fluids
The objective of the present work is to study a cosmological model for a
spatially flat Universe whose constituents are a dark energy field and a matter
field which includes baryons and dark matter. The constituents are supposed to
be in interaction and irreversible processes are taken into account through the
inclusion of a non-equilibrium pressure. The non-equilibrium pressure is
considered to be proportional to the Hubble parameter within the framework of a
first order thermodynamic theory. The dark energy and matter fields are coupled
by their barotropic indexes, which are considered as functions of the ratio
between their energy densities. The free parameters of the model are adjusted
from the best fits of the Hubble parameter data. A comparison of the viscous
model with the non-viscous one is performed. It is shown that the equality of
the dark energy and matter density parameters and the decelerated-accelerated
transition occur at earlier times when the irreversible processes are present.
Furthermore, the density and deceleration parameters and the distance modulus
have the correct behavior which is expected for a viable scenario of the
present status of the Universe.Comment: 10 pages, 7 figures, to be published in Brazilian Journal of Physic
A Pro-Cathepsin L Mutant Is a Luminal Substrate for Endoplasmic-Reticulum-Associated Degradation in C. elegans
Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy
Sickness behaviour pushed too far – the basis of the syndrome seen in severe protozoal, bacterial and viral diseases and post-trauma
Certain distinctive components of the severe systemic inflammatory syndrome are now well-recognized to be common to malaria, sepsis, viral infections, and post-trauma illness. While their connection with cytokines has been appreciated for some time, the constellation of changes that comprise the syndrome has simply been accepted as an empirical observation, with no theory to explain why they should coexist. New data on the effects of the main pro-inflammatory cytokines on the genetic control of sickness behaviour can be extended to provide a rationale for why this syndrome contains many of its accustomed components, such as reversible encephalopathy, gene silencing, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia. It is thus proposed that the pattern of pathology that comprises much of the systemic inflammatory syndrome occurs when one of the usually advantageous roles of pro-inflammatory cytokines – generating sickness behaviour by moderately repressing genes (Dbp, Tef, Hlf, Per1, Per2 and Per3, and the nuclear receptor Rev-erbα) that control circadian rhythm – becomes excessive. Although reversible encephalopathy and gene silencing are severe events with potentially fatal consequences, they can be viewed as having survival advantages through lowering energy demand. In contrast, dyserythropoiesis, seizures, coagulopathy, hypoalbuminaemia and hypertriglyceridaemia may best be viewed as unfortunate consequences of extreme repression of these same genetic controls when the pro-inflammatory cytokines that cause sickness behaviour are produced excessively. As well as casting a new light on the previously unrationalized coexistence of these aspects of systemic inflammatory diseases, this concept is consistent with the case for a primary role for inflammatory cytokines in their pathogenesis across this range of diseases
- …
