6 research outputs found
Ultrafast science and development at the Artemis facility
The Artemis facility for ultrafast XUV science is constructed around a high average power carrier-envelope phasestabilised system, which is used to generate tuneable pulses across a wavelength range spanning the UV to the far infrared, few-cycle pulses at 800nm and short pulses of XUV radiation produced through high harmonic generation. The XUV pulses can be delivered to interaction stations for materials science and atomic and molecular physics and chemistry through two vacuum beamlines for broadband XUV or narrow-band tuneable XUV pulses. The novel XUV monochromator provides bandwidth selection and tunability while preserving the pulse duration to within 10 fs. Measurements of the XUV pulse duration using an XUV-pump IR-probe technique demonstrate that the XUV pulselength is below 30 fs for a 28 fs drive laser pulse. The materials science station, which contains a hemispherical electron analyser and five-axis manipulator cooled to 14K, is optimised for photoemission experiments with the XUV. The end-station for atomic and molecular physics and chemistry includes a velocity-map imaging detector and molecular beam source for gas-phase experiments. The facility is now fully operational and open to UK and European users for twenty weeks per year. Some of the key new scientific results obtained on the facility include: the extension of HHG imaging spectroscopy to the mid-infrared; a technique for enhancing the conversion efficiency of the XUV by combining two laser fields with non-harmonically related wavelengths; and observation of D<sub>3</sub><sup>+</sup> photodissociation in intense laser fields
Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response
Annexin A5 (AnxA5) is known to have anti-inflammatory and anti-apoptotic properties. Inflammation and apoptosis are key processes in post-ischemic cardiac remodeling. In this study, we investigated the effect of AnxA5 on left ventricular (LV) function and remodeling three weeks after myocardial ischemia-reperfusion (MI-R) injury in hypercholesterolemic ApoE*3-Leiden mice. Using a mouse model for MI-R injury, we demonstrate AnxA5 treatment resulted in a 27% reduction of contrast-enhanced MRI assessed infarct size (IS). End-diastolic and end-systolic volumes were decreased by 22% and 38%, respectively. LV ejection fraction was increased by 29% in the AnxA5 group compared to vehicle. Following AnxA5 treatment LV fibrous content after three weeks was reduced by 42%, which was accompanied by an increase in LV wall thickness of the infarcted area by 17%. Two days and three weeks after MI-R injury the number of cardiac macrophages was significantly reduced in both the infarct area and border zones following AnxA5 treatment compared to vehicle treatment. Finally, we found that AnxA5 stimulation leads to a reduction of IL-6 production in bone-marrow derived macrophages in vitro. AnxA5 treatment attenuates the post-ischemic inflammatory response and ameliorates LV remodeling which improves cardiac function three weeks after MI-R injury in hypercholesterolemic ApoE*3-Leiden mice.Cardiolog
