17 research outputs found

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Surgical techniques for maxillary bone grafting - literature review

    No full text
    For oral rehabilitation with implant-supported prostheses, there are required procedures to create the bone volume needed for installation of the implants. Thus, bone grafts from intraoral or extraoral donor sites represent a very favorable opportunity. This study aimed to review the literature on the subject, seeking to discuss parameters for the indications, advantages and complications of techniques for autogenous bone grafts.Para a reabilitação bucal com as próteses implantossuportadas é necessário a realização de procedimentos para criar o volume ósseo necessário para a instalação dos implantes. Com isso, os enxertos ósseos provenientes de áreas doadoras intrabucais ou extrabucais, representam uma possibilidade bastante favorável. O presente trabalho objetivou realizar uma revisão da literatura em que procurou discutir parâmetros para as indicações, as vantagens e complicações para as técnicas dos enxertos ósseos autógenos.Universidade Estadual Paulista, Departamento de Cirurgia e Clínica Integrada, Faculdade de Odontologia de Araçatub

    Complete genetic characterization of a Brazilian dengue virus type 3 strain isolated from a fatal outcome

    No full text
    We have determined the complete nucleotide and the deduced amino acid sequences of Brazilian dengue virus type 3 (DENV-3) from a dengue case with fatal outcome, which occurred during an epidemic in the state of Rio de Janeiro, Brazil, in 2002. This constitutes the first complete genetic characterization of a Brazilian DENV-3 strain since its introduction into the country in 2001. DENV-3 was responsible for the most severe dengue epidemic in the state, based on the highest number of reported cases and on the severity of clinical manifestations and deaths reported

    GAUSSIAN SPATIAL LINEAR MODEL OF SOYBEAN YIELD USING BOOTSTRAP METHODS

    No full text
    ABSTRACT This study aims to quantify the uncertainties associated to the parameters of a Gaussian spatial linear model (GSLM) and the assumption of normality residuals in the modeling of the spatial dependence of the soybean yield as a function of soil chemical attributes. The spatial bootstrap methods were used to determine the point and interval estimators associated with the model parameters. Hypothesis tests were carried out on the significance of the model parameters and the quantile-quantile probability plot was elaborated to verify the data normality. The uncertainties associated to the parameters of the spatial dependence structure were quantified and the potassium content, phosphorus content and soil pH covariates were significant to explain the soybean yield mean. These covariates were used in the elaboration of a new model, which provided the elaboration of a contour map of soybean yield. Analysis of the quantile-quantile plot indicated that soybean yield data follow a normal probability distribution
    corecore