117 research outputs found
Toward osteogenic differentiation of marrow stromal cells and in vitro production of mineralized extracellular matrix onto natural scaffolds
Uncorrected proofTissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaffold acts as an extracellular matrix analog to culture cells and guide the development of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of polysaccharide origin, the osteogenic differentiation of mesenchymal stem cells cultured on biomimetic calcium phosphate coatings, and the delivery of biomolecules associated with extracellular matrix mineralization
Baubles, Bangles, and Biotypes: A Critical Review of the use and Abuse of the Biotype Concept
Pest species of insects are notoriously prone to escape the weapons deployed in management efforts against them. This is particularly true in herbivorous insects. When a previously successful tactic fails the insect population has apparently adapted to it and is often considered to be a new or distinct entity, and given the non-formal category ‘biotype’. The entities falling under the umbrella term ‘biotype’ are not consistent either within or between biotypes, and their underlying genetic composition and origins, while generally unknown, are likely heterogeneous within and variable between biotypes. In some cases race or species may be more appropriate referents. Some examples of applications of the concept in the context of host plant resistance are discussed. It is argued here that the term ‘biotype’ and its applications are overly simplistic, confused, have not proved useful in current pest management, and lack predictive power for future management
Insecticidal Activity of Some Reducing Sugars Against the Sweet Potato Whitefly, Bemisia tabaci, Biotype B
The effects of 16 sugars (arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, inositol, lactose, maltose, mannitol (a sugar alcohol), mannose, melibiose, ribose, sorbitol, trehalose, and xylose) on sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) survival were determined using in vitro bioassays. Of these sugars, arabinose, mannose, ribose, and xylose were strongly inhibitory to both nymphal and adult survival. When 10% mannose was added to the nymphal diet, 10.5%, 1.0%, and 0% developed to the 2nd, 3rd, and 4th instars, respectively. When 10% arabinose was added, 10.8% and 0% of the nymphs molted to the 2nd and 3rd instars, respectively. Addition of 10% xylose or ribose completely terminated B. tabaci development, preventing the molt to the 2nd instar. With decreasing sugar concentrations the inhibitory effect was significantly reduced. In tests using adults, arabinose, galactose, inositol, lactose, maltose, mannitol, mannose, melibiose, ribose, sorbitol, trehalose, and xylose significantly reduced mean day survival. Mortality rates were highest when arabinose, mannitol, mannose, ribose, or xylose was added to the diet. Mean day survival was less than 2 days when adults were fed on diet containing 10% of any one of these five sugars. When lower concentrations of sugars were used there was a decrease in mortality. Mode of action studies revealed that toxicity was not due to the inhibition of alpha glucosidase (converts sucrose to glucose and fructose) and/or trehalulose synthase (converts sucrose to trehalulose) activity. The result of agarose gel electrophoresis of RT-PCR products of bacterial endosymbionts amplified from RNA isolated from whiteflies fed with 10% arabinose, mannose, or xylose indicated that the concentration of endosymbionts in mycetomes was not affected by the toxic sugars. Experiments in which B. tabaci were fed on diets that contained radio-labeled sucrose, methionine or inulin and one or none (control) of the highly toxic sugars showed that radioactivity (expressed in DPM) in the body, in excreted honeydew and/or carbon dioxide, was significantly reduced as compared to controls. Thus, it appears that the ability of insecticidal sugars to act as antifeedants is responsible for their toxicity to B. tabaci
Modelling the impact of vector control interventions on Anopheles gambiae population dynamics
<p>Abstract</p> <p>Background</p> <p>Intensive anti-malaria campaigns targeting the <it>Anopheles </it>population have demonstrated substantial reductions in adult mosquito density. Understanding the population dynamics of <it>Anopheles </it>mosquitoes throughout their whole lifecycle is important to assess the likely impact of vector control interventions alone and in combination as well as to aid the design of novel interventions.</p> <p>Methods</p> <p>An ecological model of <it>Anopheles gambiae sensu lato </it>populations incorporating a rainfall-dependent carrying capacity and density-dependent regulation of mosquito larvae in breeding sites is developed. The model is fitted to adult mosquito catch and rainfall data from 8 villages in the Garki District of Nigeria (the 'Garki Project') using Bayesian Markov Chain Monte Carlo methods and prior estimates of parameters derived from the literature. The model is used to compare the impact of vector control interventions directed against adult mosquito stages - long-lasting insecticide treated nets (LLIN), indoor residual spraying (IRS) - and directed against aquatic mosquito stages, alone and in combination on adult mosquito density.</p> <p>Results</p> <p>A model in which density-dependent regulation occurs in the larval stages via a linear association between larval density and larval death rates provided a good fit to seasonal adult mosquito catches. The effective mosquito reproduction number in the presence of density-dependent regulation is dependent on seasonal rainfall patterns and peaks at the start of the rainy season. In addition to killing adult mosquitoes during the extrinsic incubation period, LLINs and IRS also result in less eggs being oviposited in breeding sites leading to further reductions in adult mosquito density. Combining interventions such as the application of larvicidal or pupacidal agents that target the aquatic stages of the mosquito lifecycle with LLINs or IRS can lead to substantial reductions in adult mosquito density.</p> <p>Conclusions</p> <p>Density-dependent regulation of anopheline larvae in breeding sites ensures robust, stable mosquito populations that can persist in the face of intensive vector control interventions. Selecting combinations of interventions that target different stages in the vector's lifecycle will result in maximum reductions in mosquito density.</p
Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)
Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen
Biological traits and Life table parameters A and B biotype of Bemisia tabaci (Genn.) on cotton and rapeseed
The effect of a kindergarten-based, family-involved intervention on objectively measured physical activity in Belgian preschool boys and girls of high and low SES: the ToyBox-study
Two isostructural halogen derivatives of 9-ethylcarbazole: crystal structure, Hirshfeld surface analysis, and structural comparison with other simple analogs
Effect and process evaluation of a kindergarten-based, family-involved cluster randomised controlled trial in six European countries on four- to six-year-old children’s steps per day: the ToyBox-study
Small mammal assemblages on Fort AP Hill, Virginia: habitat associations and patterns of capture success
Ecological studies of small mammals in Virginia’s
Coastal Plain have been sporadic and geographically
limited. Most focused on a limited number of species or
were general surveys over a larger geographical area than
the Coastal Plain (Pagels & Aldeman, 1971; Pagels, 1977;
Rose, 1986; Pagels, 1987; Cawthorn & Rose, 1989; Erdle
& Pagels, 1995); relatively few surveyed complete small
mammal assemblages (Rose et al., 1990; Mitchell et al.,
1993). Other studies targeted small mammal assemblages
but used protocols that are not effective in capturing the
entire fauna (Jackson et al., 1976; Pagels & French,
1987). The Coastal Plain of Virginia harbors a rich
diversity of small mammals (Webster et al., 1985; Linzey,
1998). An understanding of small mammals and their
habitats in this region of Virginia would provide
important information for elucidation of biogeographic
patterns of community structure.
The United States Department of Defense is the fifth
largest landowner of the federal landholding agencies and
currently manages over 25 million acres of land (10.1
million ha) (Boice, 1997). Most of these holdings are
military installations that are largely protected from
development and other activities that adversely effect
native flora and fauna. For this and other reasons, these
installations are becoming islands of biodiversity
(Mitchell & Roble, 1998).
The rich diversity of terrestrial habitats found on Fort
A. P. Hill, Caroline County, Virginia, should contain
robust assemblages of small mammals characteristic of
the Coastal Plain Physiographic region. The initial
objective of this survey was to describe the small mammal
assemblages of eleven Society of American Foresters
(SAF) habitat types found on Fort A. P. Hill. Secondary
objectives were to evaluate the effectiveness of multiple
trapping techniques and the effectiveness of the duration
of our sampling periods
- …
