3,013 research outputs found
Operational Semantics of Process Monitors
CSPe is a specification language for runtime monitors that can directly
express concurrency in a bottom-up manner that composes the system from
simpler, interacting components. It includes constructs to explicitly flag
failures to the monitor, which unlike deadlocks and livelocks in conventional
process algebras, propagate globally and aborts the whole system's execution.
Although CSPe has a trace semantics along with an implementation demonstrating
acceptable performance, it lacks an operational semantics. An operational
semantics is not only more accessible than trace semantics but also
indispensable for ensuring the correctness of the implementation. Furthermore,
a process algebra like CSPe admits multiple denotational semantics appropriate
for different purposes, and an operational semantics is the basis for
justifying such semantics' integrity and relevance. In this paper, we develop
an SOS-style operational semantics for CSPe, which properly accounts for
explicit failures and will serve as a basis for further study of its
properties, its optimization, and its use in runtime verification
Differential expression analysis for sequence count data
*Motivation:* High-throughput nucleotide sequencing provides quantitative readouts in assays for RNA expression (RNA-Seq), protein-DNA binding (ChIP-Seq) or cell counting (barcode sequencing). Statistical inference of differential signal in such data requires estimation of their variability throughout the dynamic range. When the number of replicates is small, error modelling is needed to achieve statistical power.

*Results:* We propose an error model that uses the negative binomial distribution, with variance and mean linked by local regression, to model the null distribution of the count data. The method controls type-I error and provides good detection power. 

*Availability:* A free open-source R software package, _DESeq_, is available from the Bioconductor project and from "http://www-huber.embl.de/users/anders/DESeq":http://www-huber.embl.de/users/anders/DESeq
Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator
We show that the properties of the electron beam and bright X-rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimised when the plasma length is matched to the laser depletion length. With a 200~TW laser pulse this results in an X-ray beam with median photon energy of 20 keV, photons per shot and a peak brightness of photons s mrad mm (0.1 % BW)
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+
We perform amplitude analyses of the decays , , and , and measure CP-violating
parameters and partial branching fractions. The results are based on a data
sample of approximately decays, collected with the
BABAR detector at the PEP-II asymmetric-energy factory at the SLAC National
Accelerator Laboratory. For , we find a direct CP asymmetry
in of , which differs
from zero by . For , we measure the
CP-violating phase .
For , we measure an overall direct CP asymmetry of
. We also perform an angular-moment analysis of
the three channels, and determine that the state can be described
well by the sum of the resonances , , and
.Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree
with published versio
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar
detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for
the spin-singlet partner of the P-wave chi_{bJ}(1P) states in the
sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We
observe an excess of events above background in the distribution of the recoil
mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width
of the observed signal is consistent with experimental resolution, and its
significance is 3.1sigma, including systematic uncertainties. We obtain the
value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching
fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
Hypernovae and Other Black-Hole-Forming Supernovae
During the last few years, a number of exceptional core-collapse supernovae
(SNe) have been discovered. Their kinetic energy of the explosions are larger
by more than an order of magnitude than the typical values for this type of
SNe, so that these SNe have been called `Hypernovae'. We first describe how the
basic properties of hypernovae can be derived from observations and modeling.
These hypernovae seem to come from rather massive stars, thus forming black
holes. On the other hand, there are some examples of massive SNe with only a
small kinetic energy. We suggest that stars with non-rotating black holes are
likely to collapse "quietly" ejecting a small amount of heavy elements (Faint
supernovae). In contrast, stars with rotating black holes are likely to give
rise to very energetic supernovae (Hypernovae). We present distinct
nucleosynthesis features of these two types of "black-hole-forming" supernovae.
Hypernova nucleosynthesis is characterized by larger abundance ratios
(Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is
characterized by a large amount of fall-back. We show that the abundance
pattern of the most Fe deficient star, HE0107-5240, and other extremely
metal-poor carbon-rich stars are in good accord with those of
black-hole-forming supernovae, but not pair-instability supernovae. This
suggests that black-hole-forming supernovae made important contributions to the
early Galactic (and cosmic) chemical evolution.Comment: 49 pages, to be published in "Stellar Collapse" (Astrophysics and
Space Science; Kluwer) ed. C. L. Fryer (2003
- …
