30 research outputs found

    Lipodystrophy and obesity are associated with decreased number of T cells with regulatory function and pro-inflammatory macrophage phenotype

    Get PDF
    Background/Objectives:In lipodystrophy (LD) adipose tissue function to store lipids is impaired, leading to metabolic syndrome, similar to that found in obesity. Emerging evidence links dysmetabolism with disorders of the immune system. Our aim is to investigate whether T-cell populations with regulatory function and monocyte-derived macrophages (MDMs) are affected by LD and obesity.Subjects/Methods:Blood was collected from 16 LD, 16 obese (OB, BMI>30 kg m -2) and 16 healthy normal-weight women (CNT). Physical parameters, plasma lipid profile, glucose, HbA1c, leptin levels were determined. Flow cytometry was employed to assess the number of circulating CD4 + /CD25 hi regulatory T cells (Tregs) and invariant natural killer T (iNKT) cells. Characterization of MDMs included: 1. morphological/oil-Red-O staining analyses to define two morphotypes: lipid laden (LL) and spindle-like (sp) MDM; 2. gene expression studies; 3. use of conditioned medium from MDMs (MDMs CM) on human SGBS cells.Results:As compared to CNT, LD and, to a lesser extent, obesity were associated with reduced Tregs and iNKTs (P<0.001 and P<0.01 for LD and OB, respectively), higher number of LL-MDMs (P<0.001 and P<0.01 for LD and OB, respectively), lower number of sp-MDMs (P<0.001 for both LD and OB), which correlated with increased paracrine stimulation of lipid accumulation in cells (P<0.001 and P<0.01 for LD and OB, respectively). LD MDMs showed decreased and increased expression for anti-inflammatory (IL10 and CD163) and pro-inflammatory (CD68 and CCL20) marker genes, respectively. Analysis of correlation indicated that Tregs are directly related with HDL (P<0.01) and inversely related with LL-MDM (P<0.001) and that LL-MDM are directly related with triglycerides (P<0.01) and oxidized LDL (P<0.01).Conclusions:LD and obesity are associated with changes in the immune system: a significant reduction in the number of T cells with regulatory function and a shift of MDM towards lipid accumulation. Lipid profile of the patients correlates with these changes

    Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis

    Get PDF
    The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by theCD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy,and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoringof treatment efficacy.Fil: Lastrucci, Claire. Centre National de la Recherche Scientifique; FranciaFil: Bénard, Alan. Centre National de la Recherche Scientifique; FranciaFil: Balboa, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pingris, Karine. Centre National de la Recherche Scientifique; FranciaFil: Souriant, Shanti. Centre National de la Recherche Scientifique; FranciaFil: Poincloux, Renaud. Centre National de la Recherche Scientifique; FranciaFil: Al Saati, Talal. Inserm; FranciaFil: Rasolofo, Voahangy. Pasteur Institute in Antananarivo; MadagascarFil: González Montaner, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Inwentarz, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Moraña, Eduardo José. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Kondova, Ivanela. Biomedical Primate Research Centre; Países BajosFil: Verreck, Franck A. W.. Biomedical Primate Research Centre; Países BajosFil: Sasiain, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. Centre National de la Recherche Scientifique; FranciaFil: Maridonneau Parini, Isabel. Centre National de la Recherche Scientifique; FranciaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, Celine. Centre National de la Recherche Scientifique; Franci

    Discovery and pre-clinical evaluation of antibodies to the NKG2A inhibitory receptor

    Full text link
    AbstractNK and CD8+ T cells are important cells for cytolysis of cancer cells. The tumor microenvironment can upregulate surface expression on these cells of NKG2A, an inhibitory receptor that can dampen immune responses to cancer leading to immune evasion. To block NKG2A-mediated inhibition, we discovered and characterized two fully human antibodies using phage and yeast display that bind to NKG2A. These antibodies are highly specific for human CD94/NKG2A heterodimer complex, displaying no binding to the activating NKG2C receptor. A mutagenesis study revealed that the serine residue at 170 position (S170) of NKG2A is critical for the selectivity of anti-NKG2A antibodies. In vitro cytotoxic assays showed that NKG2A antibody inhibitors activated primary NK cells and promoted ADCC function of specific antibodies that bind to antigens expressed on cancer cells.Summary headingFully human antibodies to the NKG2A inhibitory receptor</jats:sec

    Interleukin 10 mutant zebrafish have an enhanced interferon gamma response and improved survival against a Mycobacterium marinum infection

    Get PDF
    AbstractTuberculosis ranks as one of the world’s deadliest infectious diseases causing more than a million casualties annually. IL10 inhibits the function of Th1 type cells, and IL10 deficiency has been associated with an improved resistance against Mycobacterium tuberculosis infection in a mouse model. Here, we utilized M. marinum infection in the zebrafish (Danio rerio) as a model for studying Il10 in the host response against mycobacteria. Unchallenged, nonsense il10e46/e46 mutant zebrafish were fertile and phenotypically normal. Following a chronic mycobacterial infection, il10e46/e46 mutants showed enhanced survival compared to the controls. This was associated with an increased expression of the Th cell marker cd4-1 and a shift towards a Th1 type immune response, which was demonstrated by the upregulated expression of tbx21 and ifng1, as well as the down-regulation of gata3. In addition, at 8 weeks post infection il10e46/e46 mutant zebrafish had reduced expression levels of proinflammatory cytokines tnfb and il1b, presumably indicating slower progress of the infection. Altogether, our data show that Il10 can weaken the immune defense against M. marinum infection in zebrafish by restricting ifng1 response. Importantly, our findings support the relevance of M. marinum infection in zebrafish as a model for tuberculosis.Abstract Tuberculosis ranks as one of the world’s deadliest infectious diseases causing more than a million casualties annually. IL10 inhibits the function of Th1 type cells, and IL10 deficiency has been associated with an improved resistance against Mycobacterium tuberculosis infection in a mouse model. Here, we utilized M. marinum infection in the zebrafish (Danio rerio) as a model for studying Il10 in the host response against mycobacteria. Unchallenged, nonsense il10e46/e46 mutant zebrafish were fertile and phenotypically normal. Following a chronic mycobacterial infection, il10e46/e46 mutants showed enhanced survival compared to the controls. This was associated with an increased expression of the Th cell marker cd4-1 and a shift towards a Th1 type immune response, which was demonstrated by the upregulated expression of tbx21 and ifng1, as well as the down-regulation of gata3. In addition, at 8 weeks post infection il10e46/e46 mutant zebrafish had reduced expression levels of proinflammatory cytokines tnfb and il1b, presumably indicating slower progress of the infection. Altogether, our data show that Il10 can weaken the immune defense against M. marinum infection in zebrafish by restricting ifng1 response. Importantly, our findings support the relevance of M. marinum infection in zebrafish as a model for tuberculosis
    corecore