1,681 research outputs found
The formation of professional identity in medical students: considerations for educators
<b>Context</b> Medical education is about more than acquiring an appropriate level of knowledge and developing relevant skills. To practice medicine students need to develop a professional identity – ways of being and relating in professional contexts.<p></p>
<b>Objectives</b> This article conceptualises the processes underlying the formation and maintenance of medical students’ professional identity drawing on concepts from social psychology.<p></p>
<b>Implications</b> A multi-dimensional model of identity and identity formation, along with the concepts of identity capital and multiple identities, are presented. The implications for educators are discussed.<p></p>
<b>Conclusions</b> Identity formation is mainly social and relational in nature. Educators, and the wider medical society, need to utilise and maximise the opportunities that exist in the various relational settings students experience. Education in its broadest sense is about the transformation of the self into new ways of thinking and relating. Helping students form, and successfully integrate their professional selves into their multiple identities, is a fundamental of medical education
Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex
Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content
The slow development of microalgal biotechnology is due to the failure in the
design of large-scale photobioreactors (PBRs) where light energy is efficiently utilized. In
this work, both the quality and the amount of light reaching a given point of the PBR were
determined and correlated with cell density, light path length, and PBR geometry. This was
made for two different geometries of the downcomer of an airlift PBR using optical fiber
technology that allows to obtain information about quantitative and qualitative aspects of
light patterns. This is important since the ability of microalgae to use the energy of photons
is different, depending on the wavelength of the radiation. The results show that the circular
geometry allows a more efficient light penetration, especially in the locations with a higher
radial coordinate (r) when compared to the plane geometry; these observations were
confirmed by the occurrence of a higher fraction of illuminated volume of the PBR for this
geometry. An equation is proposed to correlate the relative light intensity with the
penetration distance for both geometries and different microalgae cell concentrations. It was
shown that the attenuation of light intensity is dependent on its wavelength, cell
concentration, geometry of PBR, and the penetration distance of light.Fundação para a Ciência e a Tecnologia (FCT
Optical Magnetometry
Some of the most sensitive methods of measuring magnetic fields utilize
interactions of resonant light with atomic vapor. Recent developments in this
vibrant field are improving magnetometers in many traditional areas such as
measurement of geomagnetic anomalies and magnetic fields in space, and are
opening the door to new ones, including, dynamical measurements of bio-magnetic
fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance
imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms,
and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic
The Role of Practitioner Resilience and Mindfulness in Effective Practice: A Practice-Based Feasibility Study.
A growing body of literature attests to the existence of therapist effects with little explanation of this phenomenon. This study therefore investigated the role of resilience and mindfulness as factors related to practitioner wellbeing and associated effective practice. Data comprised practitioners (n = 37) and their patient outcome data (n = 4980) conducted within a stepped care model of service delivery. Analyses employed benchmarking and multilevel modeling to identify more and less effective practitioners via yoking of therapist factors and nested patient outcomes. A therapist effect of 6.7 % was identified based on patient depression (PHQ-9) outcome scores. More effective practitioners compared to less effective practitioners displayed significantly higher levels of mindfulness as well as resilience and mindfulness combined. Implications for policy, research and practice are discussed
Variation, variability, and the origin of the avian endocranium:Insights from the anatomy of alioramus altai (theropoda: Tyrannosauroidea)
The internal braincase anatomy of the holotype of Alioramus altai, a relatively small-bodied tyrannosauroid from the Late Cretaceous of Mongolia, was studied using high-resolution computed tomography. A number of derived characters strengthen the diagnosis of this taxon as both a tyrannosauroid and a unique, new species (e.g., endocranial position of the gasserian ganglion, internal ramification of the facial nerve). Also present are features intermediate between the basal theropod and avialan conditions that optimize as the ancestral condition for Coelurosauria--a diverse group of derived theropods that includes modern birds. The expression of several primitive theropod features as derived character states within Tyrannosauroidea establishes previously unrecognized evolutionary complexity and morphological plasticity at the base of Coelurosauria. It also demonstrates the critical role heterochrony may have played in driving patterns of endocranial variability within the group and potentially reveals stages in the evolution of neuroanatomical development that could not be inferred based solely on developmental observations of the major archosaurian crown clades. We discuss the integration of paleontology with variability studies, especially as applied to the nature of morphological transformations along the phylogenetically long branches that tend to separate the crown clades of major vertebrate groups
Overweight, Obesity and Underweight Is Associated with Adverse Psychosocial and Physical Health Outcomes among 7-Year-Old Children: The 'Be Active, Eat Right' Study
Background:Limited studies have reported on associations between overweight, and physical and psychosocial health outcomes among younger children. This study evaluates associations between overweight, obesity and underweight in 5-year-old children, and parent-reported health outcomes at age 7 years.Methods:Data were used from the 'Be active, eat right' study. Height and weight were measured at 5 and 7 years. Parents reported on child physical and psychosocial health outcomes (e.g. respiratory symptoms, general health, happiness, insecurity and adverse treatment). Regression models, adjusted for potential confounders, were fitted to predict health outcomes at age 7 years.Results:The baseline study sample consisted of 2,372 children mean age 5.8 (SD 0.4) years; 6.2% overweight, 1.6% obese and 15.0% underweight. Based on parent-report, overweight, obese and underweight children had an odds ratio (OR) of 5.70 (95% CI: 4.10 to 7.92), 35.34 (95% CI: 19.16; 65.17) and 1.39 (95% CI: 1.05 to 1.84), respectively, for being treated adversely compared to normal weight children. Compared to children with a low stable body mass index (BMI), parents of children with a high stable BMI reported their child to have an OR of 3.87 (95% CI: 1.75 to 8.54) for visiting the general practitioner once or more, an OR of 15.94 (95% CI: 10.75 to 23.64) for being treated adversely, and an OR of 16.35 (95% CI: 11.08 to 24.36) for feeling insecure.Conclusion:This study shows that overweight, obesity and underweight at 5 years of age is associated with more parent-reported adverse treatment of the child. Qualitative research examining underlying mechanisms is recommended. Healthcare providers should be aware of the possible adverse effects of childhood overweight and also relative underweight, and provide parents and children with appropriate counseling
Binding Modes of Peptidomimetics Designed to Inhibit STAT3
STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers.
Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to
transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity
of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak
binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are
important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of
inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study
that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to
the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the
binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies
and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities.
Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions
involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode
that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger
inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing
dimerization of cancer target protein STAT3
- …
