7,723 research outputs found
On the molecular origin of high-pressure effects in nanoconfinement: The role of surface chemistry and roughness
Experiment on an Integrated Ricefish Polyculture System (6 Species, 1- 2 fish/m2) in the Mekong Delta
Our ricefish polyculture (6 species) results at two stocking densities (1 and 2 fish/m2) show that: The water quality in a ricefish polyculture system, such as water temperature (29.1 – 29.0 °C), water pH (6.6 – 6.7), water transparency (18.0 – 20.8 cm), dissolved O2 (4.7 – 4.6 ppm), CO2 (22.8 – 23.1 ppm), COD (11.9 – 12.7 ppm), are similar at both densities and acceptable for the 6 tropical fish species. Ammonium and phosphorus concentrations are statistically higher at 1 fish/m2 (0.4 and 0.2 ppm). The primary productivity is similar for both densities (6.5 – 6.8 g O2/m3/day) and suitable for fish culture. The phytoplankton biodiversity is relatively high and at the same level for both treatments (74 – 63 taxa), but the densities of phytoplankton, of zooplankton, and the biomass of zoobenthos are lower at the highest density (2 fish/m2), probably due to a higher predation by fish.The fish yield (808 kg/ha) at 2 fish/m2 is higher than at 1 fish/m2 (482 kg/ha). The cost ratio benefit (1.84) and the cost ratio profit (1.81) for farm households at 1 fish/m2 are lower than those values at 2 fish/m2 (2.1 and 2.05 respectively). Regarding the aquaculture extension program, the model of the ricefish polyculture (6 species) system with the stocking density of 2 fish/m2 could be extended in the rice fields to improve farmer's income in the Mekong delta
Inverse Modeling for MEG/EEG data
We provide an overview of the state-of-the-art for mathematical methods that
are used to reconstruct brain activity from neurophysiological data. After a
brief introduction on the mathematics of the forward problem, we discuss
standard and recently proposed regularization methods, as well as Monte Carlo
techniques for Bayesian inference. We classify the inverse methods based on the
underlying source model, and discuss advantages and disadvantages. Finally we
describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur
How early can myocardial iron overload occur in Beta thalassemia major?
BACKGROUND: Myocardial siderosis is the most common cause of death in patients with beta thalassemia major(TM). This study aimed at investigating the occurrence, prevalence and severity of cardiac iron overload in a young Chinese population with beta TM.
METHODS AND RESULTS: We analyzed T2* cardiac magnetic resonance (CMR), left ventricular ejection fraction (LVEF) and serum ferritin (SF) in 201 beta TM patients. The median age was 9 years old. Patients received an average of 13 units of blood per year. The median SF level was 4536 ng/ml and 165 patients (82.1%) had SF>2500 ng/ml. Myocardial iron overload was detected in 68 patients (33.8%) and severe myocardial iron overload was detected in 26 patients (12.6%). Twenty-two patients ≤10 years old had myocardial iron overload, three of whom were only 6 years old. No myocardial iron overload was detected under the age of 6 years. Median LVEF was 64% (measured by CMR in 175 patients). Five of 6 patients with a LVEF<56% and 8 of 10 patients with cardiac disease had myocardial iron overload.
CONCLUSIONS: The TM patients under follow-up at this regional centre in China patients are younger than other reported cohorts, more poorly-chelated, and have a high burden of iron overload. Myocardial siderosis occurred in patients younger than previously reported, and was strongly associated with impaired LVEF and cardiac disease. For such poorly-chelated TM patients, our data shows that the first assessment of cardiac T2* should be performed as early as 6 years old
New Experimental Limits on Macroscopic Forces Below 100 Microns
Results of an experimental search for new macroscopic forces with Yukawa
range between 5 and 500 microns are presented. The experiment uses 1 kHz
mechanical oscillators as test masses with a stiff conducting shield between
them to suppress backgrounds. No signal is observed above the instrumental
thermal noise after 22 hours of integration time. These results provide the
strongest limits to date between 10 and 100 microns, improve on previous limits
by as much as three orders of magnitude, and rule out half of the remaining
parameter space for predictions of string-inspired models with low-energy
supersymmetry breaking. New forces of four times gravitational strength or
greater are excluded at the 95% confidence level for interaction ranges between
200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction
Computational modelling of emboli travel trajectories in cerebral arteries: Influence of microembolic particle size and density
This article has been made available through the Brunel Open Access Publishing Fund.Ischaemic stroke is responsible for up to 80 % of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μ m and densities of 800, 1,030 and 1,300 kg/m 3 were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μ m) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions. © 2014 The Author(s)
Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us
Supernova remnants (SNRs) arise from the interaction between the ejecta of a
supernova (SN) explosion and the surrounding circumstellar and interstellar
medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However,
to understand SNRs as a whole, large samples of SNRs must be assembled and
studied. Here, we describe the radio, optical, and X-ray techniques which have
been used to identify and characterize almost 300 Galactic SNRs and more than
1200 extragalactic SNRs. We then discuss which types of SNRs are being found
and which are not. We examine the degree to which the luminosity functions,
surface-brightness distributions and multi-wavelength comparisons of the
samples can be interpreted to determine the class properties of SNRs and
describe efforts to establish the type of SN explosion associated with a SNR.
We conclude that in order to better understand the class properties of SNRs, it
is more important to study (and obtain additional data on) the SNRs in galaxies
with extant samples at multiple wavelength bands than it is to obtain samples
of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by
Athem W. Alsabti and Paul Murdin. Final version available at
https://doi.org/10.1007/978-3-319-20794-0_90-
Huntington disease: natural history, biomarkers and prospects for therapeutics
Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
- …
