9,770 research outputs found

    Corticosteroid transdermal delivery significantly improves arthritis pain and functional disability

    Get PDF
    Arthritis is characterized by pain and functional limitation affecting the patients’ quality of life. We performed a clinical study to investigate the efficacy of a betamethasone valerate medicated plaster (Betesil) in improving pain and functional disability in patients with arthritis and osteoarthritis. We enrolled 104 patients affected by osteoarthritis (n = 40) or arthritis (n = 64) in different joints. Patients received diclofenac sodium cream (2 g, four times a day) or a 2.25-mg dose of Betesil applied to the painful joint every night before bedtime for 10 days. Pain and functional disability were assessed, by the Visual Analogue Scale (VAS) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) scores. Redness was assessed by clinical inspection, and edema by the Bfovea sign^ method. C-reactive protein (CRP) was also measured; CRP can be used to cost-effectively monitor the pharmacological treatment efficacy and is increased during the acute-phase response, returning to physiological values after tissue recovery and functional restoration. All measurements were at baseline and at 10-day follow-up. At 10-day follow-up, a greater improvement in VAS and WOMAC pain and WOMAC stiffness and functional limitation scores from baseline was observed in patients treated with Betesil compared with diclofenac (all p < 0.01). At 10-day follow-up, improvement in redness, edema, and CRP levels from baseline was also greater in patients treated with Betesil compared with diclofenac (all p < 0.01). This study demonstrates the safety and efficacy of transdermal delivery of betamethasone valerate in patients affected by arthritis and osteoarthritis

    Cytonuclear introgressive swamping and species turnover of bass after an introduction

    Get PDF
    Species-specific RFLP markers from mitochondrial DNA (mtDNA) were identified and employed in conjunction with previously reported data for nuclear allozyme markers to examine the genetic consequences of an artificial introduction of spotted bass (Micropterus punctulatus) into a north Georgia reservoir originally occupied by native small mouth bass (M. dolomieui). The cytonuclear genetic data indicate that within 10-15 years following the unauthorized introduction, a reversal in these species' abundances has occurred and that more than 99% of the population sample analyzed here consists of spotted bass or products of interspecific hybridization. This demographic shift, perhaps ecologically or environmentally mediated, has been accompanied by introgressive swamping; more than 95% of the remaining small mouth bass nuclear and cytoplasmic alleles are present in individuals of hybrid ancestry. Dilocus cytonuclear disequilibria were significantly different from zero, with patterns indicative of an excess of homospecific genetic combinations (relative to expectations from single-locus allelic frequencies) and a disproportionate contribution of small mouth bass mothers to the hybrid gene pool. Results document dramatic genetic and demographic changes following the human-mediated introduction of a nonnative species

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure

    Intrinsic ripples in graphene

    Get PDF
    The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure

    Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.

    Get PDF
    <div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div

    Spontaneous Parity Violation in SUSY Strong Gauge Theory

    Full text link
    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest two new models. The first model shows confinement, and the second model has a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. The second model also induces spontaneous supersymmetry breaking.Comment: 14 page

    Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust

    Get PDF
    In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies
    corecore