1,922 research outputs found
Broadcasting Convolutional Network for Visual Relational Reasoning
In this paper, we propose the Broadcasting Convolutional Network (BCN) that
extracts key object features from the global field of an entire input image and
recognizes their relationship with local features. BCN is a simple network
module that collects effective spatial features, embeds location information
and broadcasts them to the entire feature maps. We further introduce the
Multi-Relational Network (multiRN) that improves the existing Relation Network
(RN) by utilizing the BCN module. In pixel-based relation reasoning problems,
with the help of BCN, multiRN extends the concept of `pairwise relations' in
conventional RNs to `multiwise relations' by relating each object with multiple
objects at once. This yields in O(n) complexity for n objects, which is a vast
computational gain from RNs that take O(n^2). Through experiments, multiRN has
achieved a state-of-the-art performance on CLEVR dataset, which proves the
usability of BCN on relation reasoning problems.Comment: Accepted paper at ECCV 2018. 24 page
Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants
Most plants are known as C-3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C-4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C-4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C-4 photosynthesis evolved first. Here we report that tobacco, a typical C-3 plant, shows characteristics of C-4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C-4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C-4 photosynthesis in cells around the vascular bundles of stems of C-3 plants might explain why C-4 photosynthesis has evolved independently many times
Recommended from our members
Auditory, phonological and semantic factors in the recovery from Wernicke’s aphasia post stroke: predictive value and implications for rehabilitation
Background: Understanding the factors that influence language recovery in aphasia is important for improving prognosis and treatment. Chronic comprehension impairments Wernicke’s-type aphasia (WA) are associated with impairments in auditory and phonological processing, compounded by semantic and executive difficulties. This study investigated whether the recovery of auditory, phonological, semantic or executive factors underpins the recovery from WA comprehension impairments by charting changes in the neuropsychological profiles from the sub-acute to the chronic phase.
Method: This study used a prospective, longitudinal, observational design. Twelve WA participants with superior temporal lobe lesions were recruited before 2 months post stroke onset (MPO). Language comprehension was measured alongside a neuropsychological profile of auditory, phonological and semantic processing alongside phonological short-term memory and nonverbal reasoning at three post stroke time points: 2.5, 5 and 9MPO.
Results: Language comprehension displayed a strong and consistent recovery between 2.5 and 9MPO. Improvements were also seen for slow auditory temporal processing, phonological short-term memory, and semantic processing, but not for rapid auditory temporal, spectrotemporal and phonological processing. Despite their lack of improvement, rapid auditory temporal processing at 2.5MPO and phonological processing at 5MPO predicated comprehension outcomes at 9MPO.
Conclusions: These results indicate that recovery of language comprehension in WA can be predicted from fixed auditory processing in the subacute stage. This suggests that speech comprehension recovery in WA results from reorganisation of the remaining language comprehension network to enable the residual speech signal to be processed more efficiently, rather than partial recovery of underlying auditory, phonological or semantic processing abilities
Effective connectivity reveals strategy differences in an expert calculator
Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of “cortical hubs” supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material
Common Genetic Variants Explain the Majority of the Correlation Between Height and Intelligence : The Generation Scotland Study
Creative Commons Attribution LicensePeer reviewedPublisher PD
Some size relationships in phytoflagellate motility
Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae
Do adults with high functioning autism or Asperger Syndrome differ in empathy and emotion recognition?
The present study examined whether adults with high functioning autism (HFA) showed greater difficulties in (i) their self-reported ability to empathise with others and/or (ii) their ability to read mental states in others’ eyes than adults with Asperger syndrome (AS). The Empathy Quotient (EQ) and ‘Reading the Mind in the Eyes’ Test (Eyes Test) were compared in 43 adults with AS and 43 adults with HFA. No significant difference was observed on EQ score between groups, while adults with AS performed significantly better on the Eyes Test than those with HFA. This suggests that adults with HFA may need more support, particularly in mentalizing and complex emotion recognition, and raises questions about the existence of subgroups within autism spectrum conditions
The Effect of Diel Temperature and Light Cycles on the Growth of Nannochloropsis oculata in a Photobioreactor Matrix
A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20u C versus a 15°C to 25°C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 μmol photons m-2 s-1. No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production. © 2014 Tamburic et al
Recommended from our members
Language abilities in children with autism and language impairment: using narrative as a additional source of clinical information
Autistic Spectrum Disorder (ASD) and Specific Language Impairment (SLI) are disorders of communication that are sometimes thought to show similar structural language difficulties. Recent research has even suggested that they might be aetiologically related. However, it may be that standardized language tasks are not sensitive enough to detect similarities and differences accurately. This study involved 26 Greek children with either ASD or SLI and compared them on standardized measures of structural and pragmatic language as well as using a structured narrative task. Children with ASD were more impaired on receptive but not expressive scores from standardized language tests. In contrast, narrative measures showed significantly poorer ASD performance in expressive skills involving wider story-telling skill and in some sentence-level skills, in particular referencing, compared to peers with SLI. ASD and SLI groups also showed different relationships between structural language and other measures. The data suggests that narrative is a useful tool for revealing qualitative differences in language between overlapping communication disorders both at the clinical and theoretical level, since it provides information that is lost in more formalized testing. This may be particularly true where norms are not available or testing is difficult
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
- …
