461 research outputs found
Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack
This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane (PEM) fuel cell stack of 1 kW. The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions. Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated. The mathematical equations are modeled by using Matlab–Simulink tools in order to simulate the operation of the developed model with a commercial available 1 kW horizon PEM fuel cell stack (H-1000), which is used for the purposes of model validation and tuning of the developed model. The model can be extrapolated to higher wattage fuel cells of similar arrangements. New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it
Estimating how inflated or obscured effects of climate affect forecasted species distribution
Climate is one of the main drivers of species distribution. However, as different environmental factors tend to co-vary, the
effect of climate cannot be taken at face value, as it may be either inflated or obscured by other correlated factors. We used
the favourability models of four species (Alytes dickhilleni, Vipera latasti, Aquila fasciata and Capra pyrenaica) inhabiting
Spanish mountains as case studies to evaluate the relative contribution of climate in their forecasted favourability by using
variation partitioning and weighting the effect of climate in relation to non-climatic factors. By calculating the pure effect of
the climatic factor, the pure effects of non-climatic factors, the shared climatic effect and the proportion of the pure effect of
the climatic factor in relation to its apparent effect (r), we assessed the apparent effect and the pure independent effect of
climate. We then projected both types of effects when modelling the future favourability for each species and combination
of AOGCM-SRES (two Atmosphere-Ocean General Circulation Models: CGCM2 and ECHAM4, and two Special Reports on
Emission Scenarios (SRES): A2 and B2). The results show that the apparent effect of climate can be either inflated (overrated)
or obscured (underrated) by other correlated factors. These differences were species-specific; the sum of favourable areas
forecasted according to the pure climatic effect differed from that forecasted according to the apparent climatic effect by
about 61% on average for one of the species analyzed, and by about 20% on average for each of the other species. The pure
effect of future climate on species distributions can only be estimated by combining climate with other factors. Transferring
the pure climatic effect and the apparent climatic effect to the future delimits the maximum and minimum favourable areas
forecasted for each species in each climate change scenario.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS). D. Romero is a PhD student at the University of Malaga with a grant of the Ministerio de Educacio´n y Ciencia (AP 2007-03633
Mitochondrial and nuclear markers reveal a lack of genetic structure in the entocommensal nemertean Malacobdella arrokeana in the Patagonian gulfs
Abstract Malacobdella arrokeana is an entocommensal nemertean exclusively found in the bivalve geoduck Panopea abbreviata, and it is the only representative of the genus in the southern hemisphere. To characterize its genetic diversity, population structure and recent demographic history, we conducted the first genetic survey on this species, using sequence data for the cytochrome oxidase I gene (COI), 16S rRNA (16S) and the internal transcribed spacer (ITS2). Only four different ITS2 genotypes were found in the whole sample, and the two main haplotypes identified in the mitochondrial dataset were present among all localities with a diversity ranging from 0.583 to 0.939. Nucleotide diversity was low (p = 0.001?0.002). No significant genetic structure was detected between populations, and mismatch distribution patterns and neutrality tests results are consistent with a population in expansion or under selection. Analysis of molecular variance (AMOVA) revealed that the largest level of variance observed was due to intrapopulation variation (100, 100 and 94.39 % for 16S, COI and ITS2, respectively). Fst values were also non-significant. The observed lack of population structure is likely due to high levels of genetic connectivity in combination with the lack or permeability of biogeographic barriers and episodes of habitat modification.Fil: Fernandez Alfaya, Jose Elias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Machordom, Annie. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Cs. Naturales; Españ
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment
During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation
Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16
Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse
Natural IgM are involved in numerous immunological functions but the genetic factors that control the homeostasis of its
secretion and upholding remain unknown. Prompted by the finding that C57BL/6 mice had significantly lower serum levels of
IgM when compared with BALB/c mice, we performed a genome-wide screen and found that the level of serum IgM was
controlled by a QTL on chromosome 13 reaching the highest level of association at marker D13Mit266 (LOD score¼3.54).
This locus was named IgMSC1 and covered a region encompassing the interferon-regulatory factor 4 gene (Irf4). The number
of splenic mature B cells in C57BL/6 did not differ from BALB/c mice but we found that low serum levels of IgM in C57BL/6 mice
correlated with lower frequency of IgM-secreting cells in the spleen and in the peritoneal cavity. These results suggested that
C57BL/6 mice have lower efficiency in late B-cell maturation, a process that is highly impaired in Irf4 knockout mice. In fact, we
also found reduced Irf4 gene expression in B cells of C57BL/6 mice. Thus, we propose Irf4 as a candidate for the IgMSC1
locus, which controls IgM homeostatic levels at the level of B-cell terminal differentiation
Making the competitive exclusion principle operational at the biogeographical scale using fuzzy logic
In biogeography the competitive exclusion principle (CEP) has been confirmed in some cases but not in others. This has fueled an unresolved debate between those advocating niche theory or the neutral theory in biodiversity and biogeography. We suggest that this situation mainly arises from the use of crisp logic, where the CEP is defined as either completely true or false. We propose the application of the fuzzy concepts of favorability (the degree to which environmental conditions are propitious for the occurrence of individual species) and favorableness (the degree to which environmental conditions are simultaneously favorable for competing species) to operationalize a fuzzy version of the CEP. Favorability was obtained by performing species distribution models applying favorability functions, while favorableness was derived from the application of the fuzzy intersection between the favorability for competing species. Then we plotted individual favorability values along the gradient of favorableness. Two potentially competing species would coexist in high-favorableness locations, as the demands of both species would be well fulfilled. In locations of low favorableness, the result would be either autecological exclusion of both species or autecological segregation, as abiotic conditions are unfavorable for at least one of the species. Competitive exclusion would occur at the intermediate stretch of the favorableness gradient, as the conditions would be good enough for persistence of each species separately but not enough for permanent coexistence. According to this theoretical framework, the observed probability that a location belongs to the intermediate favorableness area given that the two species co-occur in this location should be lower than expected according to the environmental probability models for the two species. We tested this prediction on published data about the distribution of pairs of native and introduced deer species in Great Britain, using a Bayesian approach. In two thirds of comparisons between a native and an introduced deer species the predictions of the fuzzy CEP were corroborated, which suggests that these are the pairs of species and the specific geographical areas affected by competitive exclusion. This is important both theoretically and for biodiversity conservation planning
- …
