1,585 research outputs found
The promoter polymorphism -232C/G of the PCK1 gene is associated with type 2 diabetes in a UK-resident South Asian population
Background: The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. \ud
\ud
Methods: We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. \ud
\ud
Results: Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). \ud
\ud
Conclusion: This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group. \ud
\ud
Trial registration: UKADS Trial Registration: ISRCTN38297969
Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population
Background
Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2) gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry.
Methods
We genotyped four single nucleotide polymorphisms (SNPs) of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372) in 831 subjects with diabetes and 437 control subjects.
Results
The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR) of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3). For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7).
Conclusion
Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease
OBJECTIVES: Visuospatial processing deficits have been reported in Huntington’s disease (HD). To date, no study has examined associations between visuospatial cognition and posterior brain findings in HD.
METHODS: We compared 119 premanifest (55> and 64<10.8 years to expected disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 controls on visual search and mental rotation performance at baseline and 12 months. In the disease groups, we also examined associations between task performance and disease severity, functional capacity and structural brain measures.
RESULTS: Cross-sectionally, there were strong differences between all disease groups and controls on visual search, and between diagnosed groups and controls on mental rotation accuracy. Only the premanifest participants close to onset took longer than controls to respond correctly to mental rotation. Visual search negatively correlated with disease burden and motor symptoms in diagnosed individuals, and positively correlated with functional capacity. Mental rotation (“same”) was negatively correlated with motor symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental rotation. Conclusions: Our findings provide evidence linking early visuospatial deficits to functioning and posterior cortical dysfunction in HD. The findings are important since large research efforts have focused on fronto-striatal mediated cognitive changes, with little attention given to aspects of cognition outside of these areas. (JINS, 2016, 22, 595–608
Quality of medication use in primary care - mapping the problem, working to a solution: a systematic review of the literature
Background: The UK, USA and the World Health Organization have identified improved patient safety in healthcare as a priority. Medication error has been identified as one of the most frequent forms of medical error and is associated with significant medical harm. Errors are the result of the systems that produce them. In industrial settings, a range of systematic techniques have been designed to reduce error and waste. The first stage of these processes is to map out the whole system and its reliability at each stage. However, to date, studies of medication error and solutions have concentrated on individual parts of the whole system. In this paper we wished to conduct a systematic review of the literature, in order to map out the medication system with its associated errors and failures in quality, to assess the strength of the evidence and to use approaches from quality management to identify ways in which the system could be made safer.
Methods: We mapped out the medicines management system in primary care in the UK. We conducted a systematic literature review in order to refine our map of the system and to establish the quality of the research and reliability of the system.
Results: The map demonstrated that the proportion of errors in the management system for medicines in primary care is very high. Several stages of the process had error rates of 50% or more: repeat prescribing reviews, interface prescribing and communication and patient adherence. When including the efficacy of the medicine in the system, the available evidence suggested that only between 4% and 21% of patients achieved the optimum benefit from their medication. Whilst there were some limitations in the evidence base, including the error rate measurement and the sampling strategies employed, there was sufficient information to indicate the ways in which the system could be improved, using management approaches. The first step to improving the overall quality would be routine monitoring of adherence, clinical effectiveness and hospital admissions.
Conclusion: By adopting the whole system approach from a management perspective we have found where failures in quality occur in medication use in primary care in the UK, and where weaknesses occur in the associated evidence base. Quality management approaches have allowed us to develop a coherent change and research agenda in order to tackle these, so far, fairly intractable problems
The role of tyrosine M210 in the initial charge separation in the reaction center of Rhodobacter sphaeroides
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia
The effects of sulfate starvation on the agar characteristics of Gracilaria species was investigated by culturing two red algae from Morib, Malaysia, Gracilaria changii and Gracilaria salicornia in sulfate-free artificial seawater for 5 days. The seaweed samples were collected in October 2012 and March 2013, periods which have significant variation in the amount of rainfall. The agar yields were shown to be independent of sulfate availability, with only 0.60–1.20 % increment in treated G. changii and 0.31–1.40 % increment in treated G. salicornia while their gel strengths did not increase significantly (approximately 5–7 %) after sulfate starvation for both species. The gelling and melting temperatures did not vary between control and treated samples from both species, except for the treated G. changii collected in March 2013. The gel syneresis index of G. salicornia collected in March 2013 increased significantly after sulfate deprivation. Sulfate starvation introduced some variations in the content of 3, 6-anhydrogalactose and total sulfate esters, but the changes did not have a pronounced effect on the physical properties of agar
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
A Social Identity Approach to Sport Psychology: Principles, Practice, and Prospects.
Drawing on social identity theory and self-categorization theory, we outline an approach to sport psychology that understands groups not simply as features of sporting contexts but rather as elements that can be, and often are, incorporated into a person's sense of self and, through this, become powerful determinants of their sport-related behavior. The underpinnings of this social identity approach are outlined, and four key lessons for sport that are indicative of the analytical and practical power of the approach are presented. These suggest that social identity is the basis for sports group (1) behavior, (2) formation and development, (3) support and stress appraisal, and (4) leadership. Building on recent developments within sport science, we outline an agenda for future research by identifying a range of topics to which the social identity approach could fruitfully contribute
- …
