7,562 research outputs found
An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?
Evidence in animal stroke models suggests that neuroplasticity takes place maximally in a specific time window after an ischaemic lesion, which may coincide with the optimal time to intervene with rehabilitation. The aim of this study is to investigate neurophysiological evidence for a "critical window" of enhanced neuroplasticity in patients following ischaemic stroke, and establish its duration. We will also investigate changes in cortical inhibition following stroke, and the influence this has on functional recovery
Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a co-ordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e. via expression from a separate RNA molecule), whilst other are required in cis (i.e. expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA-polymerase (RdRp), 3D, are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically-active 3D molecules and those which build a replication complex. We report a novel non-enzymatic cis-acting function of 3D that is essential for viral genome replication. Using a FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans-acting. Immunofluorescence studies suggest that both cis- and trans acting 3D molecules localise to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. Together, this study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further
Livestock trade network: potential for disease transmission and implications for risk-based surveillance on the island of Mayotte
The island of Mayotte is a department of France, an outermost region of the European Union located in the Indian Ocean between Madagascar and the coast of Eastern Africa. Due to its close connection to the African mainland and neighbouring islands, the island is under constant threat of introduction of infectious diseases of both human and animal origin. Here, using social network analysis and mathematical modelling, we assessed potential implications of livestock movements between communes in Mayotte for risk-based surveillance. Our analyses showed that communes in the central region of Mayotte acted as a hub in the livestock movement network. The majority of livestock movements occurred between communes in the central region and from communes in the central region to those in the outer region. Also, communes in the central region were more likely to be infected earlier than those in the outer region when the spread of an exotic infectious disease was simulated on the livestock movement network. The findings of this study, therefore, suggest that communes in the central region would play a major role in the spread of infectious diseases via livestock movements, which needs to be considered in the design of risk-based surveillance systems in Mayotte
Dental treatment and risk of variant CJD - a case control study
Abstract
Objective: Knowledge of risk factors for variant CJD (vCJD) remains limited, but transmission of prion proteins via re-useable medical devices, including dental instruments, or enhanced susceptibility following trauma to the oral cavity is a concern. This study aimed to identify whether previous dental treatment is a risk factor for development of vCJD.
Design: Case control study
Methods: Risk factor questionnaires completed by interview with relatives of 130 vCJD patients and with relatives of 66 community and 53 hospital controls were examined by a dental surgeon. Responses regarding dental treatments were analysed.
Results: We did not find a statistically significant excess of risk of vCJD associated with dental treatments with the exception of extractions in an unmatched analysis of vCJD cases with community controls (p=0.02). However, this result may be explained by multiple testing.
Conclusions: This is the first published study to date to examine potential links between vCJD and dental treatment. There was no convincing evidence found of an increased risk of variant CJD associated with reported dental treatment. However, the power of the study is restricted by the number of vCJD cases to date and does not preclude the possibility that some cases have resulted from secondary transmission via dental procedures. Due to the limitations of the data available, more detailed analyses of dental records are required to fully exclude the possibility of transmission via dental treatment
Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm
The Ward error sum of squares hierarchical clustering method has been very
widely used since its first description by Ward in a 1963 publication. It has
also been generalized in various ways. However there are different
interpretations in the literature and there are different implementations of
the Ward agglomerative algorithm in commonly used software systems, including
differing expressions of the agglomerative criterion. Our survey work and case
studies will be useful for all those involved in developing software for data
analysis using Ward's hierarchical clustering method.Comment: 20 pages, 21 citations, 4 figure
Functional Analysis of a Unique Troponin C Mutation, GLY159ASP, that Causes Familial Dilated Cardiomyopathy, Studied in Explanted Heart Muscle
Background-Familial dilated cardiomyopathy can be caused by mutations in the proteins of the muscle thin filament. In vitro, these mutations decrease Ca2+ sensitivity and cross-bridge turnover rate, but the mutations have not been investigated in human tissue. We studied the Ca2+-regulatory properties of myocytes and troponin extracted from the explanted heart of a patient with inherited dilated cardiomyopathy due to the cTnC G159D mutation.Methods and Results-Mass spectroscopy showed that the mutant cTnC was expressed approximately equimolar with wild-type cTnC. Contraction was compared in skinned ventricular myocytes from the cTnC G159D patient and nonfailing donor heart. Maximal Ca2+-activated force was similar in cTnC G159D and donor myocytes, but the Ca2+ sensitivity of cTnC G159D myocytes was higher (EC50 G159D/donor=0.60). Thin filaments reconstituted with skeletal muscle actin and human cardiac tropomyosin and troponin were studied by in vitro motility assay. Thin filaments containing the mutation had a higher Ca2+ sensitivity (EC(50)G159D/donor=0.55 +/- 0.13), whereas the maximally activated sliding speed was unaltered. In addition, the cTnC G159D mutation blunted the change in Ca2+ sensitivity when TnI was dephosphorylated. With wild-type troponin, Ca2+ sensitivity was increased (EC50 P/unP=4.7 +/- 1.9) but not with cTnC G159D troponin (EC50 P/unP=1.2 +/- 0.1).Conclusions-We propose that uncoupling of the relationship between phosphorylation and Ca2+ sensitivity could be the cause of the dilated cardiomyopathy phenotype. The differences between these data and previous in vitro results show that native phosphorylation of troponin I and troponin T and other posttranslational modifications of sarcomeric proteins strongly influence the functional effects of a mutation. (Circ Heart Fail. 2009;2:456-464.
Exploring the roles of urinary HAI-1, EpCAM and EGFR in bladder cancer prognosis and risk stratification
Objectives:
To investigate whether elevated urinary HAI-1, EpCAM and EGFR are independent prognostic biomarkers within non-muscle-invasive bladder cancer (NMIBC) patients, and have utility for risk stratification to facilitate treatment decisions.
Results:
After accounting for EAU risk group in NMIBC patients, the risk of BC-specific death was 2.14 times higher (95% CI: 1.08 to 4.24) if HAI-1 was elevated and 2.04 times higher (95% CI: 1.02 to 4.07) if EpCAM was elevated. The majority of events occurred in the high-risk NMIBC group and this is where the biggest difference is seen in the survival curves when plotted for EAU risk groups separately. In MIBC patients, being elevated for any of the three biomarkers was significantly associated with BC-specific mortality after accounting for other risk factors, HR = 4.30 (95% CI: 1.85 to 10.03).
Patients and Methods:
Urinary levels of HAI-1, EpCAM and EGFR were measured by ELISA in 683 and 175 patients with newly-diagnosed NMIBC and MIBC, respectively, recruited to the Bladder Cancer Prognosis Programme. Associations between biomarkers and progression, BC-specific mortality and all-cause mortality were evaluated using univariable and multivariable Cox regression models, adjusted for European Association of Urology (EAU) NMIBC risk groups. The upper 25% of values for each biomarker within NMIBC patients were considered as elevated. Exploratory analyses in urine from MIBC patients were also undertaken.
Conclusion:
Urinary HAI-1 and EpCAM are prognostic biomarkers for NMIBC patients. These biomarkers have potential to guide treatment decisions for high-risk NMIBC patients. Further analyses are required to define the roles of HAI-1, EpCAM and EGFR in MIBC patients
Sending Your Grandparents to University Increases Cognitive Reserve: The Tasmanian Healthy Brain Project.
Increasing an individual’s level of cognitive reserve (CR) has been suggested as a nonpharmacological
approach to reducing the risk for Alzheimer’s disease. We examined changes in CR in older
adults participating over 4 years in the Tasmanian Healthy Brain Project. Method: A sample of 459
healthy older adults between 50 and 79 years of age underwent a comprehensive annual assessment of
current CR, neuropsychological function, and psychosocial factors over a 4-year period. The intervention
group of 359 older adults (M � 59.61 years, SD � 6.67) having completed a minimum of 12 months
part-time university study were compared against a control reference group of 100 adults (M � 62.49
years, SD � 6.24) who did not engage in further education. Results: Growth mixture modeling
demonstrated that 44.3% of the control sample showed no change in CR, whereas 92.5% of the further
education participants displayed a significant linear increase in CR over the 4 years of the study. These
results indicate that older adults engaging in high-level mental stimulation display an increase in CR over
a 4-year period. Conclusion: Increasing mental activity in older adulthood may be a viable strategy to
improve cognitive function and offset cognitive decline associated with normal aging
The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI.
Contralesional dorsal premotor cortex (cPMd) may support residual motor function following stroke. We performed two complementary experiments to explore how cPMd might perform this role in a group of chronic human stroke patients. First, we used paired-coil transcranial magnetic stimulation (TMS) to establish the physiological influence of cPMd on ipsilesional primary motor cortex (iM1) at rest. We found that this influence became less inhibitory/more facilitatory in patients with greater clinical impairment. Second, we applied TMS over cPMd during functional magnetic resonance imaging (fMRI) in these patients to examine the causal influence of cPMd TMS on the whole network of surviving cortical motor areas in either hemisphere and whether these influences changed during affected hand movement. We confirmed that hand grip-related activation in cPMd was greater in more impaired patients. Furthermore, the peak ipsilesional sensorimotor cortex activity shifted posteriorly in more impaired patients. Critical new findings were that concurrent TMS-fMRI results correlated with the level of both clinical impairment and neurophysiological impairment (i.e., less inhibitory/more facilitatory cPMd-iM1 measure at rest as assessed with paired-coil TMS). Specifically, greater clinical and neurophysiological impairment was associated with a stronger facilitatory influence of cPMd TMS on blood oxygenation level-dependent signal in posterior parts of ipsilesional sensorimotor cortex during hand grip, corresponding to the posteriorly shifted sensorimotor activity seen in more impaired patients. cPMd TMS was not found to influence activity in other brain regions in either hemisphere. This state-dependent influence on ipsilesional sensorimotor regions may provide a mechanism by which cPMd supports recovered function after stroke
- …
