2,804 research outputs found
Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane
Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane
Nel positively regulates the genesis of retinal ganglion cells by promoting their differentiation and survival during development
Peer reviewedPublisher PD
Building Babies - Chapter 16
In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1)
Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (similar to 10(-3) bar) at 300 K and release it at similar to 450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 pi orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materialsopen
Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.
addresses: College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.notes: PMCID: PMC3276559The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease
Unintentional injuries in children with disabilities:a systematic review and meta-analysis
Children with disabilities are thought to have an increased risk of unintentional injuries, but quantitative syntheses of findings from previous studies have not been done. We conducted a systematic review and meta-analysis to assess whether pre-existing disability can increase the risk of unintentional injuries among children when they are compared to children without disability. We searched 13 electronic databases to identify original research published between 1 January 1990 and 28 February 2013. We included those studies that reported on unintentional injuries among children with pre-existing disabilities compared with children without disabilities. We conducted quality assessments and then calculated pooled odds ratios of injury using random-effects models. Fifteen eligible studies were included from 24,898 references initially identified, and there was a total sample of 83,286 children with disabilities drawn from the eligible studies. When compared with children without disabilities, the pooled OR of injury was 1.86 (95 % CI 1.65-2.10) in children with disabilities. The pooled ORs of injury were 1.28, 1.75, and 1.86 in the 0-4 years, 5-9 years, and ≥10 years of age subgroups, respectively. Compared with children without disabilities, the pooled OR was 1.75 (95 % CI 1.26-2.43) among those with International Classification of Functioning (ICF) limitations. When disability was defined as physical disabilities, the pooled OR was 2.39 (95 % CI 1.43-4.00), and among those with cognitive disabilities, the pooled OR was 1.77 (95 % CI 1.49-2.11). There was significant heterogeneity in the included studies. Compared with peers without disabilities, children with disabilities are at a significantly higher risk of injury. Teens with disabilities may be an important subgroup for future injury prevention efforts. More data are needed from low- and middle-income countries
Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis
We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis
Understanding the Role of Defective Phases on the Conductivity Behavior of Strained Epitaxial LaNiO3 Thin Films
Rare earth nickelates (RNiO3, where R is rare earth) possess detailed phase diagrams and exhibit a wide variety of physical phenomena such as antiferromagnetism, metal-to-insulator transitions, as well as rich strain-dependent physics. Among them, LaNiO3is unique as it retains its metallic character down to ultralow temperatures, as well as offering the promise of various topological effects and exotic phenomena. Practically speaking, however, the fabrication of LaNiO3in thin-film form is challenging since its various oxygen-deficient phases are close in formation energy. Here, we study a series of epitaxial LaNiO3films fabricated on (001) LaAlO3substrates by pulsed laser deposition under various growth and postannealing conditions. A complex correlation between structure, processing, and conduction properties is found, which is explored using a host of complementary characterization tools including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transport measurements, and scanning transmission electron microscopy. The conclusions of this study are as follows: (i) the XRD patterns of LaNiO3films cannot be used to predict whether films will be conductive or insulating, (ii) the surface XPS of defective and "nondefective" LaNiO3-xfilms can appear identical, despite the bulk having a complex defective structure, and finally, (iii) LaNiO3-xfilms with up to 50% defective phase can exhibit metallic-like transport behavior down to 40 K
The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors
One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development
Genetic association study of adiposity and melanocortin-4 receptor (MC4R) common variants: Replication and functional characterization of non-coding regions
Common genetic variants 3′ of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3′ LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 309 LD block (farther from MC4R ) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression. © 2014 Evans et al
- …
