1,004 research outputs found
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls.
Determining whether potential causal variants for related diseases are shared can identify overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and distinct causal variants. However, existing approaches require independent data sets. Here we extend two colocalization methods to allow for the shared-control design commonly used in comparison of genome-wide association study results across diseases. Our analysis of four autoimmune diseases--type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple sclerosis--identified 90 regions that were associated with at least one disease, 33 (37%) of which were associated with 2 or more disorders. Nevertheless, for 14 of these 33 shared regions, there was evidence that the causal variants differed. We identified new disease associations in 11 regions previously associated with one or more of the other 3 disorders. Four of eight T1D-specific regions contained known type 2 diabetes (T2D) candidate genes (COBL, GLIS3, RNLS and BCAR1), suggesting a shared cellular etiology.MF is funded by the Wellcome Trust (099772). CW and HG are funded by the
Wellcome Trust (089989).
This work was funded by the JDRF (9–2011–253), the Wellcome Trust (091157)
and the National Institute for Health Research
(NIHR) Cambridge Biomedical
Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt
of a Wellcome Trust Strategic Award (100140). ImmunoBase.org is supported by Eli
Lilly and Company.
We thank the UK Medical Research Council and
Wellcome Trust for funding the
collection of DNA for the British 1958 Birth Cohort (MRC grant G0000934, WT grant
068545/Z/02). DNA control samples were prepared and provided by S. Ring, R.
Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton.
Biotec Cluster M4, the Fidelity Biosciences Research Initiative, Research Foundation
Flanders, Research Fund KU Leuven, the Belgian Charcot Foundation,
Gemeinntzige Hertie Stiftung, University Zurich, the Danish MS Society, the Danish
Council for Strategic Research, the Academy of
Finland, the Sigrid Juselius
Foundation, Helsinki University, the Italian MS Foundation, Fondazione Cariplo, the
Italian Ministry of University and Research, the Torino Savings Bank Foundation, the
Italian Ministry of Health, the Italian Institute of Experimental Neurology, the MS
Association of Oslo, the Norwegian Research Council, the South–Eastern
Norwegian Health Authorities, the Australian National Health and Medical Research
Council, the Dutch MS Foundation and Kaiser Permanente.
Marina Evangelou is
thanked for motivating the investigation of the
FASLG
association.This is the author accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n7/full/ng.3330.html
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Recommended from our members
Travel Times on Changeable Message Signs in District 4
Real time traffic information on changeable message signs (CMS) has gained popularityin urban areas where congestion and incidents frequently affect the reliability of trip times. Signs have been used to broadcast information about downstream delays, incidents and travel times in a corridor. Under normal conditions, trip time is the most practical information that commuters can use to assess traffic, alleviate their stress, and ultimately make decisions on their route. Being aware of driving times to popular destinations, travelers may be able to choose an alternate route early if it appears that their intended route is too congested. Moreover, signs are the most effective mean to communicate real-time, relevant information to motorists. Unlike a radio broadcast, signs target drivers passing a given location, so that the message is highly likely to be of interest to those drivers. On-demand media such as phone or internet-based services require the user to operate a specific device, which is more fastidious and potentially hazardous
Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to POT
18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of protons-on-target to protons-on-target,aiming at initial observation of CP violation with 3 or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio
Glutathione <em>S</em>-transferase P1 (<em>GSTP1</em>) directly influences platinum drug chemosensitivity in ovarian tumour cell lines
BACKGROUND: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. METHODS: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. RESULTS: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC(50), respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. CONCLUSIONS: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients
- …
