18 research outputs found
Butyrate Attenuates Lipopolysaccharide-Induced Inflammation in Intestinal Cells and Crohn's Mucosa through Modulation of Antioxidant Defense Machinery
Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia Coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa
Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis
Avaliação do número de células caliciformes nas criptas da mucosa colônica com e sem trânsito intestinal
Elevated Aminotransferase Activity as an Indication of Muscular Dystrophy: Case Reports and Review of the Literature
Five male children are reported in whom incidental recognition of elevated serum alanine aminotransferase (ALT) activity initiated investigation to identify the cause of suspected hepatocellular injury. All five were later diagnosed with X chromosome-linked muscular dystrophy. The serum level of ALT, generally considered to be specific for hepatocellular injury, was increased two to 25 times above normal in all the reported cases. Paradoxically, the increase in ALT activity was greater than that of serum aspartate aminotransferase (three to 16 times normal), an enzyme whose elevation is generally recognized as being less specific and indicative of muscle, cardiac, kidney, pancreatic, red blood cell or hepatic injury. At presentation to the gastrointestinal service, one case, age 2.5 months, had no symptoms or signs of neuromuscular dysfunction, while the other four had previously unrecognized hypertrophy of the calves, proximal limb weakness, positive Gower’s sign or delayed gross motor skills. All five patients had marked elevation of serum creatine kinase activity and histopathologically confirmed muscular dystrophy. The practical clinical implication of this report is that children with elevated serum ALT, in the absence of other signs and symptoms of hepatic injury, may have occult muscular disease - most frequently muscular dystrophy. Although the clinical signs of muscular dystrophy may be subtle or absent, early determination of creatine kinase will suggest the correct diagnosis and minimize extensive and invasive investigation focusing on hepatic injury
The Influence of Estradiol and Diet on Small Intestinal Glucose Transport in Ovariectomized Rats
Oral butyrate for mildly to moderately active Crohn's disease
BACKGROUND:
Butyrate exerts anti-inflammatory effects in experimental colitis and on Crohn's disease lamina propria mononuclear cells in vitro.
AIM:
To explore the efficacy and safety of oral butyrate in Crohn's disease.
METHODS:
Thirteen patients with mild-moderate ileocolonic Crohn's disease received 4 g/day butyrate as enteric-coated tablets for 8 weeks. Full colonoscopy and ileoscopy were performed before and after treatment. Endoscopical and histological score, laboratory data, Crohn's disease activity index and mucosal interleukin (IL)-1beta, IL-6, IL-12, interferon-gamma, tumour necrosis factor-alpha and nuclear factor-kappa B (NF-kappaB) were assessed before and after treatment.
RESULTS:
One patient withdrew from the study, and three patients did not experience clinical improvement. Among the nine patients (69%) who responded to treatment, seven (53%) achieved remission and two had a partial response. Endoscopical and histological score significantly improved after treatment at ileocaecal level (P < 0.05). Leucocyte blood count, erythrocyte sedimentation rate and mucosal levels of NF-kappaB and IL-1beta significantly decreased after treatment (P < 0.05).
CONCLUSIONS:
Oral butyrate is safe and well tolerated, and may be effective in inducing clinical improvement/remission in Crohn's disease. These data indicate the need for a large investigation to extend the present findings, and suggest that butyrate may exert its action through downregulation of NF-kappaB and IL-1beta
Oral butyrate for mildly to moderately active Crohn's disease
Background: Butyrate exerts anti-inflammatory effects in experimental colitis and on Crohn's disease lamina propria mononuclear cells in vitro.Aim: To explore the efficacy and safety of oral butyrate in Crohn's disease.Methods: Thirteen patients with mild-moderate ileocolonic Crohn's disease received 4 g/day butyrate as enteric-coated tablets for 8 weeks. Full colonoscopy and ileoscopy were performed before and after treatment. Endoscopical and histological score, laboratory data, Crohn's disease activity index and mucosal interleukin (IL)-1 beta, IL-6, IL-12, interferon-gamma, tumour necrosis factor-alpha and nuclear factor-kappa B (NF-kappa B) were assessed before and after treatment.Results: One patient withdrew from the study, and three patients did not experience clinical improvement. Among the nine patients (69%) who responded to treatment, seven (53%) achieved remission and two had a partial response. Endoscopical and histological score significantly improved after treatment at ileocaecal level (P < 0.05). Leucocyte blood count, erythrocyte sedimentation rate and mucosal levels of NF-kappa B and IL-1 beta significantly decreased after treatment (P < 0.05).Conclusions: Oral butyrate is safe and well tolerated, and may be effective in inducing clinical improvement/remission in Crohn's disease. These data indicate the need for a large investigation to extend the present findings, and suggest that butyrate may exert its action through downregulation of NF-kappa B and IL-1 beta
Effect of soluble fiber or fructooligosaccharide supplementation upon trinitrobenzenesulphonic acid induced colitis in rats
Small intestinal mucosal histology in the syndrome of persistent diarrhoea and malnutrition: a review
The gut fermentation product butyrate, a chemopreventive agent, suppresses glutathione S-transferase theta (hGSTT1) and cell growth more in human colon adenoma (LT97) than tumor (HT29) cells.
Contains fulltext :
48397.pdf (publisher's version ) (Closed access)PURPOSE: The gut fermentation product of dietary fiber, butyrate, inhibits growth of HT29, an established tumor cell line. It also induces detoxifying enzymes belonging to the glutathione S-transferase family (GSTs), namely hGSTM2, hGSTP1, hGSTA4, but not of hGSTT1 . Here we investigated kinetics of effects in HT29 and compared sensitivities with preneoplastic LT97 colon adenoma cells, to assess mechanisms of colon cancer chemoprevention in two stages of cell transformation. METHODS: We determined cell growth after butyrate treatment by quantifying DNA, GST expression by Northern/Western Blotting or biochemical analysis and butyrate consumption by measuring the residual concentrations in the cell culture supernatants. Stability of GST-theta (hGSTT1) mRNA was assessed in HT29 cells after inhibition of transcription with actinomycin D. RESULTS: LT97 adenoma cells consumed twofold more butyrate and were more sensitive to growth inhibition than HT29 (EC(50)1.9 mM and 4.0 mM, respectively). Butyrate did not induce GSTs, but instead reduced hGSTT1 in LT97 and HT29. CONCLUSIONS: Butyrate has suppressing-agent activities in human colon cells by inhibiting two survival factors, namely hGSTT1 and cell growth, with LT97 more sensitive than HT29. These findings indicate that butyrate formation in the gut lumen of humans could be protective by reducing survival of transformed colon cells
