638 research outputs found
Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity
© 2018 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0191416© 2018 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14C (CV14), evaporative cooling vest (CVEV), arm immersion in 10C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.This project is financially supported by the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio
Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK
An evaluation has been made of a number of contrasting atmospheric chemical transport models, of varying complexity, applied to estimate sulphur and nitrogen deposition in the UK. The models were evaluated by comparison with annually averaged measurements of gas, aerosol and precipitation concentrations from the national monitoring networks. The models were evaluated in relation to performance criteria. They were generally able to satisfy a criterion of ‘fitness for purpose’ that at least 50% of modelled concentrations should be within a factor of two of measured values. The second criterion, that the magnitude of the normalised mean bias should be less than 20%, was not always satisfied. Considering known uncertainties in measurement techniques, this criterion may be too strict. Overall, simpler models were able to give a good representation of measured gas concentrations whilst the use of dynamic meteorology, and complex photo-chemical reactions resulted in a generally better representation of measured aerosol and precipitation concentrations by more complex models.
The models were compared graphically by plotting maps and cross-country transects of wet and dry deposition as well as calculating budgets of total wet and dry deposition to the UK for sulphur, oxidised nitrogen and reduced nitrogen. The total deposition to the UK varied by ±22–36% amongst the different models depending on the deposition component. At a local scale estimates of both dry and wet deposition for individual 5 km × 5 km model grid squares were found to vary between the different models by up to a factor of 4.This work was funded by the Department for the Environment, Food and Rural Affairs. Additional support was provided by the Joint Environmental Program, the Natural Environment Research Council and the Environment Agency.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.atmosenv.2015.08.00
Stimmensplitting und Koalitionswahl
Hat sich die Unabhängigkeitsstrategie der FDP bei der letzten Bundestagswahl ausgezahlt? Wäre die FDP erfolgreicher gewesen, wenn sie im Vorfeld klar signalisiert hätte, dass man eine Koalition mit der Union anstrebt? Wie war das bei den Grünen, die ja im Gegensatz zur FDP keine Zweifel aufkommen ließen? Natürlich können wir nicht wie in einer Simulation oder einem Experiment einfach den Wahlkampf wiederholen und noch einmal wählen lassen. Um eine befriedigende Antwort auf diese Frage zu finden, vergleichen wir den Kontext der Bundestagswahl 2002 mit den zurückliegenden Bundestagswahlen. Aus dem Längsschnittvergleich versuchen wir Rückschlüsse auf den substanziellen Einfluss von strategischem Stimmensplitting im Sinne einer Koalitionswahl auf das Wahlergebnis gerade der kleinen Parteien zu ziehen. Um unsere Forschungsfrage zu beantworten und substanzielle Schlüsse ziehen zu können, muss zuerst klar sein, in welcher Form und warum Stimmensplitting relevant sein kann, welche Rolle dabei Koalitionsabsprachen vor einer jeden Wahl spielen und, schließlich, welche alternativen Erklärungsmöglichkeiten die Literatur zum Thema Stimmensplitting und strategischem Wählen anzubieten hat. Nur wenn wir auch die Wirkung alternativer und zum Teil konkurrierender Hypothesen zulassen, können wir unserer Schlußfolgerungen sicher sein
Recommended from our members
Night-time measurements of HO<inf>x</inf> during the RONOCO project and analysis of the sources of HO<inf>2</inf>
Abstract. Measurements of the radical species OH and HO2 were made using the fluorescence assay by gas expansion (FAGE) technique during a series of night-time and daytime flights over the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1σ limit of detection during any of the night-time flights or during the winter daytime flights, placing upper limits on [OH] of 1.8 × 106 molecule cm−3 and 6.4 × 105 molecule cm−3 for the summer and winter flights, respectively. HO2 reached a maximum concentration of 3.2 × 108 molecule cm−3 (13.6 pptv) during a night-time flight on 20 July 2010, when the highest concentrations of NO3 and O3 were also recorded. An analysis of the rates of reaction of OH, O3, and the NO3 radical with measured alkenes indicates that the summer night-time troposphere can be as important for the processing of volatile organic compounds (VOCs) as the winter daytime troposphere. An analysis of the instantaneous rate of production of HO2 from the reactions of O3 and NO3 with alkenes has shown that, on average, reactions of NO3 dominated the night-time production of HO2 during summer and reactions of O3 dominated the night-time HO2 production during winter.
This work was funded by the UK Natural Environment Research Council (NE/F004664/1). The authors would like to thank ground staff, engineers, scientists, and pilots involved in RONOCO for making this project a success. Airborne data were obtained using the BAe 146-301 Atmospheric Research Aircraft (ARA) flown by Directflight Ltd. and managed by the Facility for Airborne Atmospheric Measurements (FAAM), which is a joint entity of the Natural Environment Research Council (NERC) and the Met Office.This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-15-8179-201
The empirical analysis of non-problematic video gaming and cognitive skills: a systematic review
Videogames have become one of the most popular leisure activities worldwide, including multiple game genres with different characteristics and levels of involvement required. Although a small minority of excessive players suffer detrimental consequences including impairment of several cognitive skills (e.g., inhibition, decision-making), it has also been demonstrated that playing videogames can improve different cognitive skills. Therefore, the current paper systematically reviewed the empirical studies experimentally investigating the positive impact of videogames on cognitive skills. Following a number of inclusion and exclusion criteria, a total of 32 papers were identified as empirically investigating three specific skills: taskswitching (eight studies), attentional control (22 studies), and sub-second time perception (two studies). Results demonstrated that compared to control groups, non-problematic use of videogames can lead to improved task-switching, more effective top-down attentional control and processing speed and increased sub-second time perception. Two studies highlighted the impact of gaming on cognitive skills differs depends upon game genre. The studies reviewed suggest that videogame play can have a positive impact on cognitive processes for players
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Night-time measurements of HOx during the RONOCO project and analysis of the sources of HO2
Measurements of the radical species OH and HO2 were made using the fluorescence assay by gas expansion (FAGE) technique during a series of night-time and daytime flights over the UK in summer 2010 and winter 2011. OH was not detected above the instrument's 1σ limit of detection during any of the night-time flights or during the winter daytime flights, placing upper limits on [OH] of 1.8 × 106 molecule cm−3 and 6.4 × 105 molecule cm−3 for the summer and winter flights, respectively. HO2 reached a maximum concentration of 3.2 × 108 molecule cm−3 (13.6 pptv) during a night-time flight on 20 July 2010, when the highest concentrations of NO3 and O3 were also recorded. An analysis of the rates of reaction of OH, O3, and the NO3 radical with measured alkenes indicates that the summer night-time troposphere can be as important for the processing of volatile organic compounds (VOCs) as the winter daytime troposphere. An analysis of the instantaneous rate of production of HO2 from the reactions of O3 and NO3 with alkenes has shown that, on average, reactions of NO3 dominated the night-time production of HO2 during summer and reactions of O3 dominated the night-time HO2 production during winter
Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.
METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact.
RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.
CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock
Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis
Context: Landscape metrics represent powerful tools for quantifying landscape structure, but uncertainties persist around their interpretation. Urban settings add unique considerations, containing habitat structures driven by the surrounding built-up environment. Understanding urban ecosystems, however, should focus on the habitats rather than the matrix. Objectives: We coupled a multivariate approach with landscape metric analysis to overcome existing shortcomings in interpretation. We then explored relationships between landscape characteristics and modelled ecosystem service provision. Methods: We used principal component analysis and cluster analysis to isolate the most effective measures of landscape variability and then grouped habitat patches according to their attributes, independent of the surrounding urban form. We compared results to the modelled provision of three ecosystem services. Seven classes resulting from cluster analysis were separated primarily on patch area, and secondarily by measures of shape complexity and inter-patch distance. Results: When compared to modelled ecosystem services, larger patches up to 10 ha in size consistently stored more carbon per area and supported more pollinators, while exhibiting a greater risk of soil erosion. Smaller, isolated patches showed the opposite, and patches larger than 10 ha exhibited no additional areal benefit. Conclusions: Multivariate landscape metric analysis offers greater confidence and consistency than analysing landscape metrics individually. Independent classification avoids the influence of the urban matrix surrounding habitats of interest, and allows patches to be grouped according to their own attributes. Such a grouping is useful as it may correlate more strongly with the characteristics of landscape structure that directly affect ecosystem function
- …
