5,375 research outputs found

    Memory and cognition in schizophrenia.

    Get PDF
    Episodic memory deficits are consistently documented as a core aspect of cognitive dysfunction in schizophrenia patients, present from the onset of the illness and strongly associated with functional disability. Over the past decade, research using approaches from experimental cognitive neuroscience revealed disproportionate episodic memory impairments in schizophrenia (Sz) under high cognitive demand relational encoding conditions and relatively unimpaired performance under item-specific encoding conditions. These specific deficits in component processes of episodic memory reflect impaired activation and connectivity within specific elements of frontal-medial temporal lobe circuits, with a central role for the dorsolateral prefrontal cortex (DLPFC), relatively intact function of ventrolateral prefrontal cortex and variable results in the hippocampus. We propose that memory deficits can be understood within the broader context of cognitive deficits in Sz, where impaired DLPFC-related cognitive control has a broad impact across multiple cognitive domains. The therapeutic implications of these findings are discussed

    Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.

    Get PDF
    ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive

    Probing Quantum Geometry at LHC

    Full text link
    We present an evidence, that the volumes of compactified spaces as well as the areas of black hole horizons must be quantized in Planck units. This quantization has phenomenological consequences, most dramatic being for micro black holes in the theories with TeV scale gravity that can be produced at LHC. We predict that black holes come in form of a discrete tower with well defined spacing. Instead of thermal evaporation, they decay through the sequence of spontaneous particle emissions, with each transition reducing the horizon area by strictly integer number of Planck units. Quantization of the horizons can be a crucial missing link by which the notion of the minimal length in gravity eliminates physical singularities. In case when the remnants of the black holes with the minimal possible area and mass of order few TeV are stable, they might be good candidates for the cold dark matter in the Universe.Comment: 14 pages, Late

    Derivation of the blackfold effective theory

    Full text link
    We study fluctuations and deformations of black branes over length scales larger than the horizon radius. We prove that the Einstein equations for the perturbed p-brane yield, as constraints, the equations of the effective blackfold theory. We solve the Einstein equations for the perturbed geometry and show that it remains regular on and outside the black brane horizon. This study provides an ab initio derivation of the blackfold effective theory and gives explicit expressions for the metrics near the new black holes and black branes that result from it, to leading order in a derivative expansion.Comment: 20 pages. v4: Typo corrected in eq. (6.11) -- erratum in the published versio

    Deglacial to postglacial palaeoenvironments of the Celtic Sea: Lacustrine conditions versus a continuous marine sequence

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Recent work on the last glaciation of the British Isles has led to an improved understanding of the nature and timing of the retreat of the British-Irish Ice Sheet (BIIS) from its southern maximum (Isles of Scilly), northwards into the Celtic and Irish seas. However, the nature of the deglacial environments across the Celtic Sea shelf, the extent of subaerial exposure and the existence (or otherwise) of a contiguous terrestrial linkage between Britain and Ireland following ice retreat remains ambiguous. Multiproxy research, based on analysis of 12 BGS vibrocores from the Celtic Deep Basin (CDB), seeks to address these issues. CDB cores exhibit a shell-rich upward fining sequence of Holocene marine sand above an erosional contact cut in laminated muds with infrequent lonestones. Molluscs, in situ Foraminifera and marine diatoms are absent from the basal muds, but rare damaged freshwater diatoms and foraminiferal linings occur. Dinoflagellate cysts and other non-pollen palynomorphs evidence diverse, environmentally incompatible floras with temperate, boreal and Arctic glaciomarine taxa co-occurring. Such multiproxy records can be interpreted as representing a retreating ice margin, with reworking of marine sediments into a lacustrine basin. Equally, the same record may be interpreted as recording similar conditions within a semi-enclosed marine embayment dominated by meltwater export and deposition of reworked microfossils. As assemblages from these cores contrast markedly with proven glaciomarine sequences from outside the CDB, a glaciolacustrine interpretation is favoured for the laminated sequence, truncated by a Late Weichselian transgressive sequence fining upwards into fully marine conditions. Reworked rare intertidal molluscs from immediately above the regional unconformity provide a minimum date c.13.9cal. ka BP for commencement of widespread marine erosion. Although suggestive of glaciolacustrine conditions, the exact nature and timing of laminated sediment deposition within the CDB, and the implications this has on (pen)insularity of Ireland following deglaciation, remain elusive. © 2013 The Boreas Collegium.Funded by NERC PhD research studentship grant. Grant Number: GT04/97/289/ES; two NSERC-funded radiocarbon allocations. Grant Numbers: 746/0898, 814/0999; MacEwan Universit

    Dynamically controlled deposition of colloidal nanoparticles suspension in evaporating drops using laser radiation

    Get PDF
    Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates

    The holographic principle

    Get PDF
    There is strong evidence that the area of any surface limits the information content of adjacent spacetime regions, at 10^(69) bits per square meter. We review the developments that have led to the recognition of this entropy bound, placing special emphasis on the quantum properties of black holes. The construction of light-sheets, which associate relevant spacetime regions to any given surface, is discussed in detail. We explain how the bound is tested and demonstrate its validity in a wide range of examples. A universal relation between geometry and information is thus uncovered. It has yet to be explained. The holographic principle asserts that its origin must lie in the number of fundamental degrees of freedom involved in a unified description of spacetime and matter. It must be manifest in an underlying quantum theory of gravity. We survey some successes and challenges in implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2: reference adde

    Kerr-CFT From Black-Hole Thermodynamics

    Full text link
    We analyze the near-horizon limit of a general black hole with two commuting killing vector fields in the limit of zero temperature. We use black hole thermodynamics methods to relate asymptotic charges of the complete spacetime to those obtained in the near-horizon limit. We then show that some diffeomorphisms do alter asymptotic charges of the full spacetime, even though they are defined in the near horizon limit and, therefore, count black hole states. We show that these conditions are essentially the same as considered in the Kerr/CFT corresponcence. From the algebra constructed from these diffeomorphisms, one can extract its central charge and then obtain the black hole entropy by use of Cardy's formula.Comment: 19 pages, JHEP3, no figures. V2: References added, small typos fixe

    Foot Bone in Vivo: Its Center of Mass and Centroid of Shape

    Get PDF
    This paper studies foot bone geometrical shape and its mass distribution and establishes an assessment method of bone strength. Using spiral CT scanning, with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot bones in vivo and investigate the relationship between the bone's external shape and internal structure. This analysis is explored on the bases of the bone's center of mass and its centroid of shape. We observe the phenomenon of superposition of center of mass and centroid of shape fairly precisely, indicating a possible appearance of biomechanical organism. We investigate two aspects of the geometrical shape, (i) distance between compact bone's centroid of shape and that of the bone and (ii) the mean radius of the same density bone issue relative to the bone's centroid of shape. These quantities are used to interpret the influence of different physical exercises imposed on bone strength, thereby contributing to an alternate assessment technique to bone strength.Comment: 9 pages, 4 figure
    corecore