163 research outputs found
The Molecular Clockwork of the Fire Ant Solenopsis invicta
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant
number DEB-1442113). Received by AR. U.S.
National Library of Medicine training grant (grant
number 2T15LM007450). Received by ALL.
Conselho Nacional de Desenvolvimento Cientı´fico e
573 Tecnológico. Northern Portugal Regional
Operational Programme (grant number NORTE-01-
0145-FEDER-000013). Received by FR. Fundação
de Amparo à Pesquisa do 572 Estado de São
Paulo. Received by GHG. National Institutes of
Health (grant number R01 AI065728-01). Received
by NPK. National Science Foundation (grant
number IOS-1401682). Received by JHW. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.</p
A whole-plant chamber system for parallel gas exchange measurements of Arabidopsis and other herbaceous species
BACKGROUND: Photosynthetic assimilation of carbon is a defining feature of the plant kingdom. The fixation of large amounts of carbon dioxide supports the synthesis of carbohydrates, which make up the bulk of plant biomass. Exact measurements of carbon assimilation rates are therefore crucial due to their impact on the plants metabolism, growth and reproductive success. Commercially available single-leaf cuvettes allow the detailed analysis of many photosynthetic parameters, including gas exchange, of a selected leaf area. However, these cuvettes can be difficult to use with small herbaceous plants such as Arabidopsis thaliana or plants having delicate or textured leaves. Furthermore, data from single leaves can be difficult to scale-up for a plant shoot with a complex architecture and tissues in different physiological states. Therefore, we constructed a versatile system—EGES-1—to simultaneously measure gas exchange in the whole shoots of multiple individual plants. Our system was designed to be able record data continuously over several days. RESULTS: The EGES-1 system yielded comparable measurements for eight plants for up to 6 days in stable, physiologically realistic conditions. The chambers seals have negligible permeability to carbon dioxide and the system is designed so as to detect any bulk-flow air leaks. We show that the system can be used to monitor plant responses to changing environmental conditions, such as changes in illumination or stress treatments, and to compare plants with phenotypically severe mutations. By incorporating interchangeable lids, the system could be used to measure photosynthetic gas exchange in several genera such as Arabidopsis, Nicotiana, Pisum, Lotus and Mesembryanthemum. CONCLUSION: EGES-1 can be introduced into a variety of growth facilities and measure gas exchange in the shoots diverse plant species grown in different growth media. It is ideal for comparing photosynthetic carbon assimilation of wild-type and mutant plants and/or plants undergoing selected experimental treatments. The system can deliver valuable data for whole-plant growth studies and help understanding mutant phenotypes. Overall, the EGES-1 is complementary to the readily-available single leaf systems that focus more on the photosynthetic process in within the leaf lamina. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13007-015-0089-z) contains supplementary material, which is available to authorized users
Inference of the infection status of individuals using longitudinal testing data from cryptic populations: Towards a probabilistic approach to diagnosis
Effective control of many diseases requires the accurate detection of infected individuals. Confidently ascertaining whether an individual is infected can be challenging when diagnostic tests are imperfect and when some individuals go for long periods of time without being observed or sampled. Here, we use a multi-event capture-recapture approach to model imperfect observations of true epidemiological states. We describe a method for interpreting potentially disparate results from individuals sampled multiple times over an extended period, using empirical data from a wild badger population naturally infected with Mycobacterium bovis as an example. We examine the effect of sex, capture history and current and historical diagnostic test results on the probability of being truly infected, given any combination of diagnostic test results. In doing so, we move diagnosis away from the traditional binary classification of apparently infected versus uninfected to a probability-based interpretation which is updated each time an individual is re-sampled. Our findings identified temporal variation in infection status and suggest that capture probability is influenced by year, season and infection status. This novel approach to combining ecological and epidemiological data may aid disease management decision-making by providing a framework for the integration of multiple diagnostic test data with other information
Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint
Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes
Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans
In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex
Caenorhabditis elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint–Dependent Block in Anaphase Chromosome Segregation
The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–dependent block in anaphase chromosome segregation
Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis
Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications
The nonmedical use of prescription ADHD medications: results from a national Internet panel
© 2007 Novak et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
- …
