11,748 research outputs found
Decentralization and Health: Case Studies of Kenya, Pakistan, and the Philippines
Decentralization, defined by the World Bank (2001) as, “the transfer of authority and responsibility for public functions from the central government to intermediate and local governments or quasi-‐independent government organizations and/or the private sector,” is a movement that has gained much traction in recent history. For many countries undergoing decentralization, a major driver has been a desire to increase the role and participation of local governments in the decision-‐making space. In doing this, it is hoped to create governance structures that are more accountable and responsive to the people. For health, decentralization has been touted as a potential way to improve responsiveness to local needs, improve service delivery, and improve equitability. In light of these goals, many countries as part of their political decentralization have also opted to decentralize healthcare.https://jdc.jefferson.edu/cwicposters/1020/thumbnail.jp
The integrated dynamic land use and transport model MARS
Cities worldwide face problems like congestion or outward migration of businesses. The involved transport and land use interactions require innovative tools. The dynamic Land Use and Transport Interaction model MARS (Metropolitan Activity Relocation Simulator) is part of a structured decision making process. Cities are seen as self organizing systems. MARS uses Causal Loop Diagrams from Systems Dynamics to explain cause and effect relations. MARS has been benchmarked against other published models. A user friendly interface has been developed to support decision makers. Its usefulness was tested through workshops in Asia. This paper describes the basis, capabilities and uses of MARS
Dynamics on the Way to Forming Glass: Bubbles in Space-time
We review a theoretical perspective of the dynamics of glass forming liquids
and the glass transition. It is a perspective we have developed with our
collaborators during this decade. It is based upon the structure of trajectory
space. This structure emerges from spatial correlations of dynamics that appear
in disordered systems as they approach non-ergodic or jammed states. It is
characterized in terms of dynamical heterogeneity, facilitation and excitation
lines. These features are associated with a newly discovered class of
non-equilibrium phase transitions. Equilibrium properties have little if
anything to do with it. The broken symmetries of these transitions are obscure
or absent in spatial structures, but they are vivid in space-time (i.e.,
trajectory space). In our view, the glass transition is an example of this
class of transitions. The basic ideas and principles we review were originally
developed through the analysis of idealized and abstract models. Nevertheless,
the central ideas are easily illustrated with reference to molecular dynamics
of more realistic atomistic models, and we use that illustrative approach here.Comment: 21 pages, 8 figures. Submitted to Annu. Rev. Phys. Che
Medicinal Cannabis Use in Sickle Cell Anemia
Approximately 100,000 Americans suffer from sickle cell anemia (SCA), a severe hereditary form of anemia in which red blood cells can mutate into a sickled shape causing severe pain crises that can lead to ED visits, hospitalization, and negatively impact multiple organ systems. Pain crises greatly impact the quality of life for SCA patients. Living with SCA can be stressful and often affects patients’ mental health, causing anxiety or depression (National Heart, Lung, and Blood Institute, 2016). Opioids have been a treatment mainstay for the severe pain caused by SCA but the side effects of opioids, plus the risk of dependence, are issues that have led both patients and researchers to consider medicinal cannabis as a treatment option. While there is limited research addressing the treatment of sickle cell pain with cannabis some research does suggest that cannabis could have a beneficial effect on the management of both chronic pain and acute pain (Choo, Feldstein Ewing, & Lovejoy, 2016; Kroenke & Cheville, 2017). The aim of this study is to evaluate the association between medicinal cannabis use and quality of life for individuals with SCA. The primary goal of this pilot study is to gather a cohort of participants and administer a baseline survey that will be used in a larger study. The goal of the larger study is to assess the impact of medicinal cannabis available through Pennsylvania’s Department of Health-approved dispensaries in Philadelphia on the quality of life for individuals with sickle cell anemia (SCA)
Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality.
The worldwide spread of a novel influenza A (H1N1) virus in 2009 showed that influenza remains a significant health threat, even for individuals in the prime of life. This paper focuses on the unusually high young adult mortality observed during the Spanish flu pandemic of 1918. Using historical records from Canada and the U.S., we report a peak of mortality at the exact age of 28 during the pandemic and argue that this increased mortality resulted from an early life exposure to influenza during the previous Russian flu pandemic of 1889-90. We posit that in specific instances, development of immunological memory to an influenza virus strain in early life may lead to a dysregulated immune response to antigenically novel strains encountered in later life, thereby increasing the risk of death. Exposure during critical periods of development could also create holes in the T cell repertoire and impair fetal maturation in general, thereby increasing mortality from infectious diseases later in life. Knowledge of the age-pattern of susceptibility to mortality from influenza could improve crisis management during future influenza pandemics
Ligand-based virtual screening using binary kernel discrimination
This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening
Evolution favors protein mutational robustness in sufficiently large populations
BACKGROUND: An important question is whether evolution favors properties such
as mutational robustness or evolvability that do not directly benefit any
individual, but can influence the course of future evolution. Functionally
similar proteins can differ substantially in their robustness to mutations and
capacity to evolve new functions, but it has remained unclear whether any of
these differences might be due to evolutionary selection for these properties.
RESULTS: Here we use laboratory experiments to demonstrate that evolution
favors protein mutational robustness if the evolving population is sufficiently
large. We neutrally evolve cytochrome P450 proteins under identical selection
pressures and mutation rates in populations of different sizes, and show that
proteins from the larger and thus more polymorphic population tend towards
higher mutational robustness. Proteins from the larger population also evolve
greater stability, a biophysical property that is known to enhance both
mutational robustness and evolvability. The excess mutational robustness and
stability is well described by existing mathematical theories, and can be
quantitatively related to the way that the proteins occupy their neutral
network.
CONCLUSIONS: Our work is the first experimental demonstration of the general
tendency of evolution to favor mutational robustness and protein stability in
highly polymorphic populations. We suggest that this phenomenon may contribute
to the mutational robustness and evolvability of viruses and bacteria that
exist in large populations
A multiple scales approach to crack front waves
Perturbation of a propagating crack with a straight edge is solved using the
method of matched asymptotic expansions (MAE). This provides a simplified
analysis in which the inner and outer solutions are governed by distinct
mechanics. The inner solution contains the explicit perturbation and is
governed by a quasi-static equation. The outer solution determines the
radiation of energy away from the tip, and requires solving dynamic equations
in the unperturbed configuration. The outer and inner expansions are matched
via the small parameter L/l defined by the disparate length scales: the crack
perturbation length L and the outer length scale l associated with the loading.
The method is first illustrated for a scalar crack model and then applied to
the elastodynamic mode I problem.
The dispersion relation for crack front waves is found by requiring that the
energy release rate is unaltered under perturbation. The wave speed is
calculated as a function of the nondimensional parameter kl where k is the
crack front wavenumber, and dispersive properties of the crack front wave speed
are described for the first time. The example problems considered here
demonstrate that the potential of using MAE for moving boundary value problems
with multiple scales.Comment: 25 pages, 5 figure
The Changing Epidemiology of Malaria in Ifakara Town, Southern Tanzania.
Between 1995 and 2000 there were marked changes in the epidemiology of malaria in Ifakara, southern Tanzania. We documented these changes using parasitological and clinical data from a series of community- and hospital-based studies involving children up to the age of 5 years. There was a right shift and lowering in the age-specific parasite prevalence in the community-based cohort studies. The incidence of clinical malaria in placebo-receiving infants in additional study cohorts dropped from 0.8 in 1995 to 0.43 episodes per infant per year in 2000, an incidence rate ratio of 0.53 (95% confidence interval: 0.404, 0.70, P<0.0001). At the same time, there was an increase in the total number of malaria admissions and a marked right shift in the age pattern of these admissions (median age in 1995 1.55 years vs. 2.33 in 2000, P<0.0001). However, the burden of malaria deaths remained in infants. We discuss how these dramatic changes in the epidemiology of malaria may have arisen from the use of currently available malaria control tools. Caution is required in the interpretation of hospital-based data as it is likely to underestimate the impact of anaemia on mortality in the community, where most paediatric deaths occur. Even in low/moderate malaria transmission settings, where older children suffer most malaria episodes, targeting effective malaria control at infants may produce important reductions in infant mortality caused by malaria
Recommended from our members
Determinants of Influenza Mortality Trends: Age-Period-Cohort Analysis of Influenza Mortality in the United States, 1959-2016.
This study examines the roles of age, period, and cohort in influenza mortality trends over the years 1959-2016 in the United States. First, we use Lexis surfaces based on Serfling models to highlight influenza mortality patterns as well as to identify lingering effects of early-life exposure to specific influenza virus subtypes (e.g., H1N1, H3N2). Second, we use age-period-cohort (APC) methods to explore APC linear trends and identify changes in the slope of these trends (contrasts). Our analyses reveal a series of breakpoints where the magnitude and direction of birth cohort trends significantly change, mostly corresponding to years in which important antigenic drifts or shifts took place (i.e., 1947, 1957, 1968, and 1978). Whereas child, youth, and adult influenza mortality appear to be influenced by a combination of cohort- and period-specific factors, reflecting the interaction between the antigenic experience of the population and the evolution of the influenza virus itself, mortality patterns of the elderly appear to be molded by broader cohort factors. The latter would reflect the processes of physiological capital improvement in successive birth cohorts through secular changes in early-life conditions. Antigenic imprinting, cohort morbidity phenotype, and other mechanisms that can generate the observed cohort effects, including the baby boom, are discussed
- …
