2,551 research outputs found
Visibility Representations of Boxes in 2.5 Dimensions
We initiate the study of 2.5D box visibility representations (2.5D-BR) where
vertices are mapped to 3D boxes having the bottom face in the plane and
edges are unobstructed lines of sight parallel to the - or -axis. We
prove that: Every complete bipartite graph admits a 2.5D-BR; The
complete graph admits a 2.5D-BR if and only if ; Every
graph with pathwidth at most admits a 2.5D-BR, which can be computed in
linear time. We then turn our attention to 2.5D grid box representations
(2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit
square at integer coordinates. We show that an -vertex graph that admits a
2.5D-GBR has at most edges and this bound is tight. Finally,
we prove that deciding whether a given graph admits a 2.5D-GBR with a given
footprint is NP-complete. The footprint of a 2.5D-BR is the set of
bottom faces of the boxes in .Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Peroxisome Proliferator-Activated Receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes
Background: PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response.
Methods: PPARα, β and γ mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARα protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARα was analyzed by gel shift assay.
Results: In lymphocytes, the expression of PPARα mRNA, but not of PPARβ, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARα was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARα and PPARβ mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARγ mRNA levels were below the detection limit.
Conclusion: Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARα may therefore contribute to the inflammatory processes that are observed in CF
Dust-free quasars in the early Universe
The most distant quasars known, at redshifts z=6, generally have properties
indistinguishable from those of lower-redshift quasars in the rest-frame
ultraviolet/optical and X-ray bands. This puzzling result suggests that these
distant quasars are evolved objects even though the Universe was only seven per
cent of its current age at these redshifts. Recently one z=6 quasar was shown
not to have any detectable emission from hot dust, but it was unclear whether
that indicated different hot-dust properties at high redshift or if it is
simply an outlier. Here we report the discovery of a second quasar without
hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free
quasars have no counterparts at low redshift. Moreover, we demonstrate that the
hot-dust abundance in the 21 quasars builds up in tandem with the growth of the
central black hole, whereas at low redshift it is almost independent of the
black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage,
with rapid mass accretion and dust formation. The two hot-dust-free quasars are
likely to be first-generation quasars born in dust-free environments and are
too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010
Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development
Origin of terminal voltage variations due to self-mixing in a terahertz frequency quantum cascade laser
The use of quantum cascade lasers (QCLs) for laser feedback interferometry (LFI) has received significant attention since it enables a wide range of sensing applications without requiring a separate detector, and hence simplifies experimental apparatus [1]. LFA (based on the self-mixing effect) refers to the partial reinjection of the radiation emitted from a laser after reflection from a target; the injected radiation field then interacts with the intra-cavity field causing measurable variations of the QCL terminal voltage. The theory of LFI with conventional laser sources is well studied and explained by the Lang–Kobayashi model [2, 3]. However, while this enables the dynamic state populations and light interaction to be modelled, a linear relationship between the change in cavity light power, ∆P, and terminal voltage variation is commonly assumed, i.e. VSM ∝ ∆P [4, 5]. This is not strictly applicable to QCL structures since carrier transport is dominated by the mechanisms of electron subband alignment, intersubband scattering and photon driven transport between subbands with energy separations that change with applied bias (terminal voltage). We present experimental results of a QCL which departs significantly from this assumed linear behavior. We observe strong enhancement of the self-mixing signal in regions where the local gradient of the current-voltage (I–V) curve increases. We explain the origin of this signal using an extended density matrix (DM) approach [6] which accounts for coherent transport and interaction of the optical light field with the active region. The model is used to calculate the I–V characteristics of a bound-to-continuum (BTC) terahertz (THz) QCL and predict the effect of light variation on terminal voltage at a fixed drive current. This approach is shown to predict the experimental signal with good agreement
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Laser feedback interferometry with THz QCLs: A new technology for imaging and materials analysis
Considerable interest exists for sensing and imaging technologies in the terahertz (THz) spectral range, in particular for the interrogation of materials of an organic or biological nature. Development in THz quantum cascade lasers is seeing higher operating temperatures and peak output powers in pulsed mode, accentuating their place as the preferred source of coherent THz frequency radiation. Technological development of interferometric sensing schemes continues to take advantage of practical improvements in THz quantum cascade lasers. In this Summary, we give a brief overview of some recent developments in this regard
A new aircraft architecture based on the ACHEON Coanda effect nozzle: flight model and energy evaluation
Purpose
Aeronautic transport has an effective necessity of reducing fuel consumption and emissions to deliver efficiency and competitiveness driven by today commercial and legislative requirements. Actual aircraft configurations scenario allows envisaging the signs of a diffused technological maturity and they seem very near their limits. This scenario clearly shows the necessity of radical innovations with particular reference to propulsion systems and to aircraft architecture consequently.
Methods
This paper presents analyses and discusses a promising propulsive architecture based on an innovative nozzle, which allows realizing the selective adhesion of two impinging streams to two facing jets to two facing Coanda surfaces. This propulsion system is known with the acronym ACHEON (Aerial Coanda High Efficiency Orienting Nozzle). This paper investigates how the application of an all-electric ACHEONs propulsion system to a very traditional commuter aircraft can improve its relevant performances. This paper considers the constraints imposed by current state-of-the-art electric motors, drives, storage and conversion systems in terms of both power/energy density and performance and considers two different aircraft configurations: one using battery only and one adopting a more sophisticated hybrid cogeneration. The necessity of producing a very solid analysis has forced to limit the deflection of the jet in a very conservative range (±15°) with respect to the horizontal. This range can be surely produced also by not optimal configurations and allow minimizing the use of DBD. From the study of general flight dynamics equations of the aircraft in two-dimensional form it has been possible to determine with a high level of accuracy the advantages that ACHEON brings in terms of reduced stall speed and of reduced take-off and landing distances. Additionally, it includes an effective energy analysis focusing on the efficiency and environmental advantages of the electric ACHEON based propulsion by assuming the today industrial grade high capacity batteries with a power density of 207 Wh/kg.
Results
It has been clearly demonstrated that a short flight could be possible adopting battery energy storage, and longer duration could be possible by adopting a more sophisticated cogeneration system, which is based on cogeneration from a well-known turboprop, which is mostly used in helicopter propulsion. This electric generation system can be empowered by recovering the heat and using it to increase the temperature of the jet. It is possible to transfer this considerable amount of heat to the jet by convection and direct fluid mixing. In this way, it is possible to increase the energy of the jets of an amount that allows more than recover the pressure losses in the straitening section. In this case, it is then possible to demonstrate an adequate autonomy of flight and operative range of the aircraft. The proposed architecture, which is within the limits of the most conservative results obtained, demonstrates significant additional benefits for aircraft manoeuvrability. In conclusion, this paper has presented the implantation of ACHEON on well-known traditional aircraft, verifying the suitability and effectiveness of the proposed system both in terms of endurance with a cogeneration architecture and in terms of manoeuvrability. It has demonstrated the potential of the system in terms of both takeoff and landing space requirements.
Conclusions
This innovation opens interesting perspectives for the future implementation of this new vector and thrust propulsion system, especially in the area of greening the aeronautic sector. It has also demonstrated that ACHEON has the potential of renovating completely a classic old aircraft configuration such as the one of Cessna 402
Preliminary analysis of immune activation in early onset type 2 diabetes
Introduction. First Nations and other Aboriginal children are disproportionately affected by cardiometabolic diseases, including type 2 diabetes (T2D). In T2D, the disruption of insulin signalling can be driven by pro-inflammatory immunity. Pro-inflammatory responses can be fueled by toll-like receptors (TLR) on immune cells such as peripheral blood mononuclear cells (PBMC, a white blood cell population). TLR4 can bind to lipids from bacteria and food sources activating PBMC to produce cytokines tumour necrosis factor (TNF)-α and interleukin (IL)-1β. These cytokines can interfere with insulin signalling. Here, we seek to understand how TLR4 activation may be involved in early onset T2D. We hypothesized that immune cells from youth with T2D (n=8) would be more reactive upon TLR4 stimulation relative to cells from age and body mass index (BMI)-matched controls without T2D (n=8). Methods. Serum samples were assayed for adipokines (adiponectin and leptin), as well as cytokines. Freshly isolated PBMC were examined for immune reactivity upon culture with TLR4 ligands bacterial lipopolysaccharide (LPS, 2 and 0.2 ng/ml) and the fatty acid palmitate (200 µM). Culture supernatants were evaluated for the amount of TNF-α and IL-1β produced by PBMC. Results. Youth with T2D displayed lower median serum adiponectin levels compared to controls (395 vs. 904 ng/ml, p<0.05). PBMC isolated from youth with and without T2D produced similar levels of TNF-α and IL-1β after exposure to the higher LPS concentration. However, at the low LPS dose the T2D cohort exhibited enhanced IL-1β synthesis relative to the control cohort. Additionally, exposure to palmitate resulted in greater IL-1β synthesis in PBMCs isolated from youth with T2D versus controls (p<0.05). These differences in cytokine production corresponded to greater monocyte activation in the T2D cohort. Conclusion. These preliminary results suggest that cellular immune responses are exaggerated in T2D, particularly with respect to IL-1β activity. These studies aim to improve the understanding of the biology behind early onset T2D and its vascular complications that burden First Nations people
- …
