673 research outputs found
Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI
The production of contrast agents sensitive to neuronal signaling events is a rate-limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High-throughput generation and evaluation of potential probes are possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacterial heme protein that allowed detection of the neurotransmitter dopamine in vitro and in living animals. The directed evolution method involves successive cycles of mutagenesis and screening that could be generalized to produce contrast agents sensitive to a variety of molecular targets in the nervous system
Formalization of Transform Methods using HOL Light
Transform methods, like Laplace and Fourier, are frequently used for
analyzing the dynamical behaviour of engineering and physical systems, based on
their transfer function, and frequency response or the solutions of their
corresponding differential equations. In this paper, we present an ongoing
project, which focuses on the higher-order logic formalization of transform
methods using HOL Light theorem prover. In particular, we present the
motivation of the formalization, which is followed by the related work. Next,
we present the task completed so far while highlighting some of the challenges
faced during the formalization. Finally, we present a roadmap to achieve our
objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201
Recall termination in free recall
Although much is known about the dynamics of memory search in the free recall task, relatively little is known about the factors related to recall termination. Reanalyzing individual trial data from 14 prior studies (1,079 participants in 28,015 trials) and defining termination as occurring when a final response is followed by a long nonresponse interval, we observed that termination probability increased throughout the recall period and that retrieval was more likely to terminate following an error than following a correct response. Among errors, termination probability was higher following prior-list intrusions and repetitions than following extralist intrusions. To verify that this pattern of results can be seen in a single study, we report a new experiment in which 80 participants contributed recall data from a total of 9,122 trials. This experiment replicated the pattern observed in the aggregate analysis of the prior studies
Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat
Background and Aims
Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality.
Methods
Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution.
Results
Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar.
Conclusions
Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose
New technologies for examining neuronal ensembles in drug addiction and fear
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear
A porcine gene, PBK, differentially expressed in the longissimus muscle from Meishan and Large White pig
An investigation of differences in gene expression in the longissimus muscle of Meishan and Large White pigs was undertaken, using the mRNA display technique. A fragment of one differentially expressed gene was isolated and sequenced, whereupon the complete cDNA sequence was then obtained by using the rapid amplification of cDNA ends (RACE). The nucleotide sequence of the gene is not related to any known porcine gene. Sequence analysis revealed that the open reading frame of this gene encodes a protein with 322 amino acids, thus displaying high sequence identity with the PDZ binding kinase (PBK) of eleven other animal species – dog, horse, cattle, human, chimpanzee, crab-eating macaque, rhesus monkey, rat, mouse, gray short-tailed opossum and platypus, so it can be defined as the porcine PBK gene. This gene was finally assigned GeneID:100141310. Phylogenetic tree analysis revealed that the swine PBK gene has a closer genetic relationship with the PBK gene of platypus. Gene expression analysis of eight tissues of a Meishan x Large White cross showed that the porcine PBK gene is differentially expressed in various tissues. Our experiment established the primary foundation for further research on this gene
Cassini observations of planetary-period oscillations of Saturn's magnetopause
Examination of Cassini magnetic field and plasma data in the outer boundary regions of Saturn's magnetosphere shows that magnetopause oscillations at the planetary period commonly occur, in phase with plasma pressure variations inside the magnetosphere. The peak-to-trough amplitude of the boundary oscillations mapped to the planet-Sun line is estimated to be typically similar to 2 R-S, corresponding to a similar to 10% change in the boundary radius. The change in internal pressure required to produce such motions is estimated to be similar to 40% of the background values. A qualitative physical picture is proposed in which a compressive wave propagates outward through the sub-corotating outer magnetospheric plasma, originating from a corotating source in the nearer-planet region
31P magnetic resonance spectroscopy as a predictor of efficacy in photodynamic therapy using differently charged zinc phthalocyanines
Photodynamic therapy (PDT) is a developing approach to the treatment of solid tumours which requires the combined action of light and a photosensitizing drug in the presence of adequate levels of molecular oxygen. We have developed a novel series of photosensitizers based on zinc phthalocyanine which are water-soluble and contain neutral (TDEPC), positive (PPC) and negative (TCPC) side-chains. The PDT effects of these sensitizers have been studied in a mouse model bearing the RIF-1 murine fibrosarcoma line studying tumour regrowth delay, phosphate metabolism by magnetic resonance spectroscopy (MRS) and blood flow, using D2O uptake and MRS. The two main aims of the study were to determine if MRS measurements made at the time of PDT treatment could potentially be predictive of ultimate PDT efficacy and to assess the effects of sensitizer charge on PDT in this model. It was clearly demonstrated that there is a relationship between MRS measurements during and immediately following PDT and the ultimate effect on the tumour. For all three drugs, tumour regrowth delay was greater with a 1-h time interval between drug and light administration than with a 24-h interval. In both cases, the order of tumour regrowth delay was PPC > TDEPC = TCPC (though the data at 24 h were not statistically significant). Correspondingly, there were greater effects on phosphate metabolism (measured at the time of PDT or soon after) for the 1-h than for the 24-h time interval. Again effects were greatest with the cationic PPC, with the sequence being PPC > TDEPC > TCPC. A parallel sequence was observed for the blood flow effects, demonstrating that reduction in blood flow is an important factor in PDT with these sensitizers. © 1999 Cancer Research Campaig
Evaluation of preoperative intra-aortic balloon pump in coronary patients with severe left ventricular dysfunction undergoing OPCAB surgery: early and mid-term outcomes
<p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to evaluate the safety and the cost-effectiveness of using preoperative IABP as support compared with postoperative IABP treatment in coronary patients with severe left ventricular dysfunction (SLVD) who is undergoing off-pump coronary artery bypass surgery (OPCAB), including early outcomes, hospital mortality and morbidity, and mid-term follow-up outcomes.</p> <p>Methods</p> <p>Between March 2000 and December 2008, we prospectively and randomly studied the insertion of preoperative IABP in 115 (7.4%) and postoperative IABP in 106 (6.8%) of the 1560 consecutive patients. Group A is preoperative IABP therapy. Group B is postoperative IABP therapy.</p> <p>Results</p> <p>There was no significant difference in the number of grafts used between the two groups. Completeness of revascularization did not differ between the two groups. The statistically significant difference was hospital mortality (2.6% in group A vs. 3.8% in group B) (<it>p </it>< 0.05). And there was significant reduction in postoperative low cardiac output, malignant arrhythmia, acute renal failure and length of stay in ICU in group A, compared with group B (<it>p </it>< 0.05). In the two groups, six-, 12-, 24- and 48-month survival rates were similar. In the study the degree of improvement in angina and quality of life did not differ significantly between the two groups.</p> <p>Conclusion</p> <p>The use of preoperative IABP in SLVD patients undergoing OPCAB is of safety and effectiveness. The combined use of preoperative IABP and OPCAB allows complete revascularization in SLVD patients with an important reduction in operative mortality and excellent mid-term results.</p
Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting
To gain a better understanding of the role of somatic mutations in olaparib response, next-generation sequencing (NGS) of BRCA1 and BRCA2 was performed as part of a planned retrospective analysis of tumors from a randomized, double-blind, Phase II trial (Study 19; D0810C00019; NCT00753545) in 265 patients with platinum-sensitive high-grade serous ovarian cancer. BRCA1/2 loss-of-function mutations were found in 55% (114/209) of tumors, were mutually exclusive, and demonstrated high concordance with Sanger-sequenced germline mutations in matched blood samples, confirming the accuracy (97%) of tumor BRCA1/2 NGS testing. Additionally, NGS identified somatic mutations absent from germline testing in 10% (20/209) of the patients. Somatic mutations had >80% biallelic inactivation frequency and were predominantly clonal, suggesting that BRCA1/2 loss occurs early in the development of these cancers. Clinical outcomes between placebo- and olaparib-treated patients with somatic BRCA1/2 mutations were similar to those with germline BRCA1/2 mutations, indicating that patients with somatic BRCA1/2 mutations benefit from treatment with olaparib
- …
