464 research outputs found
Frame dragging with optical vortices
General Relativistic calculations in the linear regime have been made for
electromagnetic beams of radiation known as optical vortices. These exotic
beams of light carry a physical quantity known as optical orbital angular
momentum (OAM). It is found that when a massive spinning neutral particle is
placed along the optical axis, a phenomenon known as inertial frame dragging
occurs. Our results are compared with those found previously for a ring laser
and an order of magnitude estimate of the laser intensity needed for a
precession frequency of 1 Hz is given for these "steady" beams of light.Comment: 13 pages, 2 figure
The N-terminal intrinsically disordered domain of mgm101p is localized to the mitochondrial nucleoid.
The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted
Microscopic Realization of the Kerr/CFT Correspondence
Supersymmetric M/string compactifications to five dimensions contain BPS
black string solutions with magnetic graviphoton charge P and near-horizon
geometries which are quotients of AdS_3 x S^2. The holographic duals are
typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These
same 5D compactifications also contain non-BPS but extreme Kerr-Newman black
hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying
Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2,
the near-horizon geometry coincides precisely with the right-moving temperature
T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known
dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the
Kerr/CFT correspondence. Moreover, at linear order away from maximality, one
finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution
and the associated thermal CFT entropy reproduces the linearly sub-maximal
Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a
finite-temperature quotient of a warped deformation of the magnetic string
geometry. The corresponding dual deformation of the magnetic string CFT
potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by
Kerr/CFT.Comment: 18 pages, no figure
Healthcare providers' views on the acceptability of financial incentives for breastfeeding:a qualitative study
BACKGROUND: Despite a gradual increase in breastfeeding rates, overall in the UK there are wide variations, with a trend towards breastfeeding rates at 6–8 weeks remaining below 40% in less affluent areas. While financial incentives have been used with varying success to encourage positive health related behaviour change, there is little research on their use in encouraging breastfeeding. In this paper, we report on healthcare providers’ views around whether using financial incentives in areas with low breastfeeding rates would be acceptable in principle. This research was part of a larger project looking at the development and feasibility testing of a financial incentive scheme for breastfeeding in preparation for a cluster randomised controlled trial. METHODS: Fifty–three healthcare providers were interviewed about their views on financial incentives for breastfeeding. Participants were purposively sampled to include a wide range of experience and roles associated with supporting mothers with infant feeding. Semi-structured individual and group interviews were conducted. Data were analysed thematically drawing on the principles of Framework Analysis. RESULTS: The key theme emerging from healthcare providers’ views on the acceptability of financial incentives for breastfeeding was their possible impact on ‘facilitating or impeding relationships’. Within this theme several additional aspects were discussed: the mother’s relationship with her healthcare provider and services, with her baby and her family, and with the wider community. In addition, a key priority for healthcare providers was that an incentive scheme should not impact negatively on their professional integrity and responsibility towards women. CONCLUSION: Healthcare providers believe that financial incentives could have both positive and negative impacts on a mother’s relationship with her family, baby and healthcare provider. When designing a financial incentive scheme we must take care to minimise the potential negative impacts that have been highlighted, while at the same time recognising the potential positive impacts for women in areas where breastfeeding rates are low
A road to reality with topological superconductors
Topological states of matter are a source of low-energy quasiparticles, bound
to a defect or propagating along the surface. In a superconductor these are
Majorana fermions, described by a real rather than a complex wave function. The
absence of complex phase factors promises protection against decoherence in
quantum computations based on topological superconductivity. This is a tutorial
style introduction written for a Nature Physics focus issue on topological
matter.Comment: pre-copy-editing, author-produced version of the published paper: 4
pages, 2 figure
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Development and initial validation of the Influences on Patient Safety Behaviours Questionnaire
YesBackground: Understanding the factors that make it more or less likely that healthcare practitioners (HCPs) will
perform certain patient safety behaviors is important in developing effective intervention strategies. A questionnaire
to identify determinants of HCP patient safety behaviors does not currently exist. This study reports the
development and initial validation of the Influences on Patient Safety Behaviors Questionnaire (IPSBQ) based on the
Theoretical Domains Framework.
Methods: Two hundred and thirty-three HCPs from three acute National Health Service Hospital Trusts in the
United Kingdom completed the 34-item measure focusing on one specific patient safety behavior (using pH as the
first line method for checking the position of a nasogastric tube). Confirmatory factor analysis (CFA) was undertaken
to generate the model of best fit.
Results: The final questionnaire consisted of 11 factors and 23 items, and CFA produced a reasonable fit: χ2 (175) =
345.7, p < 0.001; CMIN/DF = 1.98; GFI = 0.90 and RMSEA = 0.06, as well as adequate levels of discriminant validity,
and internal consistency (r = 0.21 to 0.64).
Conclusions: A reliable and valid theoretically underpinned measure of determinants of HCP patient safety
behavior has been developed. The criterion validity of the measure is still unknown and further work is necessary to
confirm the reliability and validity of this measure for other patient safety behaviors
Arterial Spin-Labeling Perfusion Metrics in Pediatric Posterior Fossa Tumor Surgery
BACKGROUND AND PURPOSE: Pediatric posterior fossa tumors often present with hydrocephalus; postoperatively, up to 25% of patients develop cerebellar mutism syndrome. Arterial spin-labeling is a noninvasive means of quantifying CBF and bolus arrival time. The aim of this study was to investigate how changes in perfusion metrics in children with posterior fossa tumors are modulated by cerebellar mutism syndrome and hydrocephalus requiring pre-resection CSF diversion. MATERIALS AND METHODS: Forty-four patients were prospectively scanned at 3 time points (preoperatively, postoperatively, and at 3-month follow-up) with single- and multi-inflow time arterial spin-labeling sequences. Regional analyses of CBF and bolus arrival time were conducted using coregistered anatomic parcellations. ANOVA and multivariable, linear mixed-effects modeling analysis approaches were used. The study was registered at clinicaltrials.gov (NCT03471026). RESULTS: CBF increased after tumor resection and at follow-up scanning (P = .045). Bolus arrival time decreased after tumor resection and at follow-up scanning (P = .018). Bolus arrival time was prolonged (P = .058) following the midline approach, compared with cerebellar hemispheric surgical approaches to posterior fossa tumors. Multivariable linear mixed-effects modeling showed that regional perfusion changes were more pronounced in the 6 children who presented with symptomatic obstructive hydrocephalus requiring pre-resection CSF diversion, with hydrocephalus lowering the baseline mean CBF by 20.5 (standard error, 6.27) mL/100g/min. Children diagnosed with cerebellar mutism syndrome (8/44, 18.2%) had significantly higher CBF at follow-up imaging than those who were not (P = .040), but no differences in pre- or postoperative perfusion parameters were seen. CONCLUSIONS: Multi-inflow time arterial spin-labeling shows promise as a noninvasive tool to evaluate cerebral perfusion in the setting of pediatric obstructive hydrocephalus and demonstrates increased CBF following resolution of cerebellar mutism syndrome
A finite strain fibre-reinforced viscoelasto-viscoplastic model of plant cell wall growth
A finite strain fibre-reinforced viscoelasto-viscoplastic model implemented in a finite element (FE) analysis is presented to study the expansive growth of plant cell walls. Three components of the deformation of growing cell wall, i.e. elasticity, viscoelasticity and viscoplasticity-like growth, are modelled within a consistent framework aiming to present an integrative growth model. The two aspects of growth—turgor-driven creep and new material deposition—and the interplay between them are considered by presenting a yield function, flow rule and hardening law. A fibre-reinforcement formulation is used to account for the role of cellulose microfibrils in the anisotropic growth. Mechanisms in in vivo growth are taken into account to represent the corresponding biologycontrolled behaviour of a cell wall. A viscoelastic formulation is proposed to capture the viscoelastic response in the cell wall. The proposed constitutive model provides a unique framework for modelling both the in vivo growth of cell wall dominated by viscoplasticity-like behaviour and in vitro deformation dominated by elastic or viscoelastic responses. A numerical scheme is devised, and FE case studies are reported and compared with experimental data
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
- …
