68 research outputs found
Inference of Antibiotic Resistance and Virulence among Diverse Group A Streptococcus Strains Using emm Sequencing and Multilocus Genotyping Methods
typing (direct sequencing of the genomic segment coding for the antigenic portion of the M protein) or by multilocus genotyping methods. Phenotype analysis, including critical AbR typing, is generally achieved by much slower and more laborious direct culture-based methods. type and the associated AbR and virulence phenotypes. types
Eps8 Regulates Axonal Filopodia in Hippocampal Neurons in Response to Brain-Derived Neurotrophic Factor (BDNF)
A novel signaling cascade controlling actin polymerization in response to extracellular signals regulates filopodia formation and likely also neuronal synapse formation
Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy
The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min)
Proteins That Promote Filopodia Stability, but Not Number, Lead to More Axonal-Dendritic Contacts
Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1), a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation
Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix
The perinatal androgen to estrogen ratio and autistic-like traits in the general population: a longitudinal pregnancy cohort study
BACKGROUND: Prenatal androgen exposure has been hypothesized to be linked to autism spectrum disorder (ASD). While previous studies have found a link between testosterone levels in amniotic fluid and autistic-like traits, a similar relationship has not been found for testosterone in umbilical cord blood. However, it may be the net biological activity of multiple androgens and estrogens that influences postnatal effects of prenatal sex steroids. Accordingly, composite levels of androgens (A) and estrogens (E) were investigated, along with their ratio, in relation to autistic-like traits in young adulthood. METHODS: Sex steroid data in umbilical cord blood were available from 860 individuals at delivery. Samples were analyzed for androgens (testosterone, androstenedione, and dehydroepiandrosterone) and estrogens (estrone, estradiol, estriol, and estetrol). Levels of bioavailable testosterone, estradiol, and estrone were measured and used to calculate A and E composites and the A to E ratio. Participants were approached in early adulthood to complete the autism-spectrum quotient (AQ) as a self-report measure of autistic-like traits, with 183 males (M = 20.10 years, SD = 0.65 years) and 189 females (M =19.92 years, SD = 0.68 years) providing data. RESULTS: Males exhibited significantly higher androgen composites and A to E composite ratios than females. Males also scored significantly higher on the details/patterns subscale of the AQ. Subsequent categorical and continuous analyses, which accounted for covariates, revealed no substantial relationships between the A/E composites or the A to E ratio and the AQ total or subscale scores. CONCLUSIONS: The current study found no link between the A/E composites or the A to E ratio in cord blood and autistic-like traits in the population as measured by the AQ. These outcomes do not exclude the possibility that these sex steroid variables may predict other neurodevelopmental traits in early development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11689-015-9114-9) contains supplementary material, which is available to authorized users
Procalcitonin: Does It Have a Role in the Diagnosis, Management and Prognosis of Patients with Sepsis?
- …
