995 research outputs found
A new class of self-assembled monolayers on gold using an alkynyl group as a linker
The geometry and energetics for adsorption of ethynylbenzene on Au(111) have been studied using Density Functional Theory. The alkynyl group, following removal of the terminal H atom, adsorbs covalently to the surface in the fcc hollow site with a bond energy of about 70 kcal.mol-1. Intermediate adsorption states are also possible via a hydrogen 1,2 shift to form a surface-bound vinylidene, or through the opening of the C-C triple bond without removing the hydrogen atom. © 2006 IEEE
Influence of pH and temperature on alunite dissolution: Rates, products and insights on mechanisms from atomistic simulation
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe processes, rates, controlling factors and products of alunite (KAl3(SO4)2(OH)6) dissolution were assessed using batch dissolution experiments at pHs of c. 3, 4, 4.6, 7 and 8, and temperatures of c. 280, 293 and 313K. Alunite dissolution is roughly congruent at pH3, while at pH≥3.9 the process is incongruent, giving a lower Al/K ratio in solution than in the pristine alunite sample. The decrease in the Al/K ratio appears to be caused by precipitation of secondary aluminium sulfate/hydroxysulfate minerals coating the surface of the dissolving alunite, as inferred from SEM images and XPS determinations, but these minerals do not passivate the alunite surface for the time frame of the experiments (up to 400h). The lowest dissolution rates are obtained for pH4.6 and 280K. Both the temperature increase and any pH variation from that point lead to faster dissolution rates. Based on the potassium release to solution, the influence of pH and temperature on the alunite dissolution rate for pH of 4.8 and below can be expressed as;. rateK= 104.4 ± 0.5aH+0.10 ± 0.02e32±3/RTwhere rateKis the alunite dissolution rate (in mol·m-2·s-1); aH+is the activity of hydrogen ions in solution; R is the Universal gas constant (in kJ·mol-1·K-1) and T is temperature (in K).For pH of 4.6 and above, the alunite dissolution rate can instead be expressed as;. rateK= 102.5±0.8aOH0.14±0.02e-39±4/RTwhere aOH-is the activity of hydroxyl ions in solution. In light of the calculated values for the activation energy under the two sets of pH conditions (32 ± 3 and 39 ± 4 kJ·mol-1), alunite dissolution appears to be surface-controlled. Examination of the most stable solvated alunite surfaces obtained by atomistic computer simulations suggests that the least energetically favourable steps during alunite dissolution are the detachment of either Al atoms or SO4tetrahedra from exposed surfaces. Thus, these processes are most probably the rate-determining steps in alunite dissolution.This work has been funded by the EC Marie Curie Intra-European Fellowship program (Project entitled ‘Reactivity of Aluminium Sulfate Minerals in Mine Wastes’; RASMIM) through a fellowship to P.A. The authors acknowledge also the NERC (National Environmental Research Council, United Kingdom) for partially funding the characterisation of mineral samples through the project ‘Characterisation of nanometre-sized aluminium sulphates: implications for mobility of aluminium from mine wastes’ (FENAC/2013/11/001)
An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly
Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays
Defects and lithium migration in Li<sub>2</sub>CuO<sub>2</sub>
Li2CuO2 is an important candidate material as a cathode in lithium ion batteries. Atomistic simulation methods are used to investigate the defect processes, electronic structure and lithium migration mechanisms in Li2CuO2. Here we show that the lithium energy of migration via the vacancy mechanism is very low, at 0.11 eV. The high lithium Frenkel energy (1.88 eV/defect) prompted the consideration of defect engineering strategies in order to increase the concentration of lithium vacancies that act as vehicles for the vacancy mediated lithium self-diffusion in Li2CuO2. It is shown that aluminium doping will significantly reduce the energy required to form a lithium vacancy from 1.88 eV to 0.97 eV for every aluminium introduced, however, it will also increase the migration energy barrier of lithium in the vicinity of the aluminium dopant to 0.22 eV. Still, the introduction of aluminium is favourable compared to the lithium Frenkel process. Other trivalent dopants considered herein require significantly higher solution energies, whereas their impact on the migration energy barrier was more pronounced. When considering the electronic structure of defective Li2CuO2, the presence of aluminium dopants results in the introduction of electronic states into the energy band gap. Therefore, doping with aluminium is an effective doping strategy to increase the concentration of lithium vacancies, with a minimal impact on the kinetics
The Effects of Serotonin Receptor Antagonists on Contraction and Relaxation Responses Induced by Electrical Stimulation in the Rat Small Intestine
Background: The main source of 5-HT in body is in enterchromafin cells of intestine, different studies mentioned different roles for endogenous 5-HT and receptors involved and it is not clearified the mechanism of action of endogenous 5-HT.
Objectives: To study the role of endogenous 5-HT on modulation of contraction and relaxation responses induced by electrical field stimulation (EFS) in different regions of the rat intestine.
Materials and Methods: Segments taken from the rat duodenum, jejunum, mid and terminal ileum were vertically mounted, connected to a transducer and exposed to EFS with different frequencies in the absence and presence of various inhibitors of enteric mediators i. e. specific 5-HT receptor antagonists.
Results: EFS-induced responses were sensitive to TTX and partly to atropine, indicating a major neuronal involvement and a cholinergic system. Pre-treatment with WAY100635 (a 5-HT1A receptor antagonist) and granisetron up to 10.0 µM, GR113808 (a 5-HT4 receptor antagonist), methysergide and ritanserin up to 1.0 µM, failed to modify responses to EFS inall examined tissues. In the presence of SB258585 1.0 µM (a 5-HT6 receptor antagonist) there was a trend to enhance contraction in the proximal part of the intestine and reduce contraction in the distal part. Pre-treatment with SB269970A 1.0 µM (5-HT7 receptor antagonist) induced a greater contractile response to EFS at 0.4 Hz only in the duodenum.
Conclusions: The application of 5-HT1A, 5-HT2, 5-HT3, 5-HT4, 5-HT6 and 5-HT7 receptor antagonists, applied at concentrations lower than 1.0 µM did not modify the EFS-induced contraction and relaxation responses, whichsuggests the unlikely involvement of endogenous 5-HT in mediating responses to EFS in the described test conditions.
Keywords: Electric Stimulation Therapy; Serotonin 5-HT1 Receptor Antagonists; Intestine, Smal
Defects, Dopants and Sodium Mobility in Na<sub>2</sub>MnSiO<sub>4</sub>
Sodium manganese orthosilicate, Na2MnSiO4, is a promising positive electrode material in rechargeable sodium ion batteries. Atomistic scale simulations are used to study the defects, doping behaviour and sodium migration paths in Na2MnSiO4. The most favourable intrinsic defect type is the cation anti-site (0.44 eV/defect), in which, Na and Mn exchange their positions. The second most favourable defect energy process is found to be the Na Frenkel (1.60 eV/defect) indicating that Na diffusion is assisted by the formation of Na vacancies via the vacancy mechanism. Long range sodium paths via vacancy mechanism were constructed and it is confirmed that the lowest activation energy (0.81 eV) migration path is three dimensional with zig-zag pattern. Subvalent doping by Al on the Si site is energetically favourable suggesting that this defect engineering stratergy to increase the Na content in Na2MnSiO4 warrants experimental verification
Recommended from our members
Exploratory Analysis of Mutations in Circulating Tumour DNA as Biomarkers of Treatment Response for Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A Retrospective Study
Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP).
We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%-22%) compared to 0.7% (IQR 0.3%-2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson = 0.59, 32 cm, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28-54) compared with a median time to nadir of 84 d (IQR 42-116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07-0.67, = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%-92%) and 88% specificity (95% CI 64%-99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort.
In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment.This work was supported by Cancer Research UK Grant numbers: A15601 (JDB), A11906 (NR), A20240 (NR), A18072 (JDB). JDB was supported by the National Institute for Health Research Cambridge Biomedical Research Centre. CAP was supported in part by the Academy of Medical Sciences, the Wellcome Trust, British Heart Foundation and Arthritis Research UK
Li2SnO3 as a Cathode Material for Lithium-ion Batteries:Defects, Lithium Ion Diffusion and Dopants
Tin-based oxide Li2SnO3 has attracted considerable interest as a promising cathode material for potential use in rechargeable lithium batteries due to its high- capacity. Static atomistic scale simulations are employed to provide insights into the defect chemistry, doping behaviour and lithium diffusion paths in Li2SnO3. The most favourable intrinsic defect type is Li Frenkel (0.75 eV/defect). The formation of anti-site defect, in which Li and Sn ions exchange their positions is 0.78 eV/defect, very close to the Li Frenkel. The present calculations confirm the cation intermixing found experimentally in Li2SnO3. Long range lithium diffusion paths via vacancy mechanisms were examined and it is confirmed that the lowest activation energy migration path is along the c-axis plane with the overall activation energy of 0.61 eV. Subvalent doping by Al on the Sn site is energetically favourable and is proposed to be an efficient way to increase the Li content in Li2SnO3. The electronic structure calculations show that the introduction of Al will not introduce levels in the band gap
Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids
Chromosome pairing in the meiotic metaphase I of wheatrye
hybrids has been characterized by sequential genomic
and fluorescent in situ hybridization allowing not only the
discrimination of wheat and rye chromosomes, but also the
identification of the individual wheat and rye chromosome
arms involved in the chromosome associations. The majority
of associations (93.8%) were observed between the wheat
chromosomes. The largest number of wheat-wheat chromosome
associations (53%) was detected between the A and D
genomes, while the frequency of B-D and A-B associations
was significantly lower (32 and 8%, respectively). Among the
A-D chromosome associations, pairing between the 3AL and
3DL arms was observed with the highest frequency, while
the most frequent of all the chromosome associations (0.113/
cell) was found to be the 3DS-3BS. Differences in the pairing
frequency of the individual chromosome arms of wheat-rye
hybrids have been discussed in relation to the homoeologous
relationships between the constituent genomes of
hexaploid wheat
Wheat-barley hybridization – the last forty years
Abstract Several useful alien gene transfers have
been reported from related species into wheat (Triticum
aestivum), but very few publications have dealt
with the development of wheat/barley (Hordeum
vulgare) introgression lines. An overview is given
here of wheat 9 barley hybridization over the last
forty years, including the development of
wheat 9 barley hybrids, and of addition and translocation
lines with various barley cultivars. A short
summary is also given of the wheat 9 barley hybrids
produced with other Hordeum species. The meiotic
pairing behaviour of wheat 9 barley hybrids is presented,
with special regard to the detection of wheat–
barley homoeologous pairing using the molecular
cytogenetic technique GISH. The effect of in vitro
multiplication on the genome composition of intergeneric
hybrids is discussed, and the production and
characterization of the latest wheat/barley translocation
lines are presented. An overview of the agronomical
traits (b-glucan content, earliness, salt tolerance,
sprouting resistance, etc.) of the newly developed
introgression lines is given. The exploitation and
possible use of wheat/barley introgression lines for
the most up-to-date molecular genetic studies
(transcriptome analysis, sequencing of flow-sorted
chromosomes) are also discussed
- …
