190 research outputs found

    Extended density matrix model applied to tall barrier quantum cascade lasers

    Get PDF
    Quantum cascade lasers (QCLs) are promising sources of terahertz (THz) radiation that have applications such as security and medical screening. While optical output power has recently exceeded 1 W, their highest operating temperature is currently limited to ~200 K due to mechanisms such as thermal back filling and non-radiative phonon emission between lasing states. Another possible cause of performance degradation is parasitic leakage currents over barriers into continuum states as subband electron temperatures increase with lattice temperature. Novel designs with new injection schemes remain an intensive research area and new efforts are being made assuming that barrier heights no longer need to be constant. A possible advantage of this is using tall barriers to reduce the leakage current, and in this work we present a theoretical study of recent experimental evidence supporting this. Interface roughness (IFR) scattering scales with the conduction band discontinuity squared and the calculations also assume a typical correlation length Λ and root mean roughness value Δ which are related to growth quality of the individual sample. We take typical values of Λ=60 Å and Δ=3 Å for these parameters. The QCL gain and current output characteristics are calculated using an extended density matrix solver which models transport through the injection barrier coherently. We obtain similar current and gain values at resonance for both structures, indicating that the experimentally observed reduction in current density could be accredited to the reduction of parasitic current leakage. Additionally, this work attempted a similar design with all AlAs barriers which did not lase and it was conjectured that this was due to excessive IFR scattering as well as increased susceptibility to monolayer fluctuations with thinner layers. Our model, which accounts for the lifetime broadening in the gain calculation, confirms that modifying the IFR parameters to Λ=100 Å and Δ=1 Å (i.e. unrealistically sharp interfaces) leads to a significant improvement in performance as shown in Figure 1. We extend this work by proposing designs which aim to balance leakage current reduction and excessive scattering to achieve higher operating temperatures

    Influence of barrier height on interface roughness scattering and coherent transport in AlGaAs quantum cascade lasers

    Get PDF
    Quantum cascade lasers (QCLs) are promising sources of terahertz (THz) radiation that have applications such as security and medical screening. While optical output power has recently exceeded 1 W, their highest operating temperature is currently limited to ~200 K due to mechanisms such as thermal back filling and non-radiative phonon emission between lasing states. Another possible cause of performance degradation is parasitic leakage currents over barriers into continuum states as subband electron temperatures increase with lattice temperature. Novel designs with new injection schemes remain an intensive research area and new efforts are being made assuming that barrier heights no longer need to be constant. A possible advantage of this is using tall barriers to reduce the leakage current, and in this work we present a theoretical study of the effects of increased barrier heights on transport between states in the structure. Similar to previous efforts, we initially restrict the modification of barrier height to the injection barrier; these are typically the thickest in THz QCLs and allow the reduced barrier widths necessary for AlAs barriers to remain above 1 ML

    Open-source bandstructure models of interdiffusion, impurity and exciton states for the QWWAD v1.4 simulation suite

    Get PDF
    The vast majority of high-quality software for simulating semiconductor nanostructures (e.g., [1]) is supplied under a proprietary license and its source code cannot be studied, modified or redistributed by its users. The open-source project, Quantum Wells, Wires and Dots (QWWAD) [2] is a free, non-commercial community-focused resource, which accompanies the new 4th edition of the eponymous textbook [3]. Previously described features in QWWAD include numerical Schrodinger/Poisson solvers in generic 1D potentials [e.g., Fig. 1(a)], quasi-analytical and empirical pseudopotential calculations of the band-structure in quantum wires and dots, and scattering calculations for interactions with impurities, phonons, interface roughness, alloy disorder and carrier–carrier processes. We describe new tools, included in the latest release (QWWAD v1.4), for modelling the perturbed quantum-confined states within 2D heterostructures resulting from interdiffusion, impurities and excitonic contribution

    A scattering rate approach to the understanding of absorption line broadening in near-infrared AlGaN/GaN quantum wells

    No full text
    There has been much interest in the advancement of III-Nitride growth technology to fabricate AlGaN/GaN heterostructures for intersubband transitions (ISBTs). The large conduction band offset in these structures (up to 2 eV) allows transition energies in the near- to the far-infrared region, which have applications from telecommunications, such as in all-optical switches, to infra-red detectors for sensing and imaging. To date, ISBT electroluminescence has been elusive and absorption measurements remain an important method to verify band structure calculations. The growth quality can be inferred from the absorption spectrum, which will have line broadening with contributions that are both inhomogeneous (large-scale interface roughness, and non-parabolicity) and homogeneous (electron scattering related lifetime broadening). In the present work we calculated the contributions of various homogeneous broadening mechanisms (electron interaction with longitudinal-optical (LO) phonons, acoustic phonons, impurities and alloy disorder) to the full linewidth, and also the contribution of band non-parabolicity, which contributes to the inhomogeneous broadening. Calculations are then compared to the measured absorption spectra of several samples

    Design considerations for GaN/AlN based unipolar (opto-)electronic devices, and interface quality aspects

    Get PDF
    We describe the theoretical and experimental studies of GaN/AlGaN based resonant tunnelling diodes, and in particular analyse the effects and typical values of interface roughness, and then discuss the implications of these, realistic material quality parameters on performance of unipolar optoelectronic devices

    Origin of terminal voltage variations due to self-mixing in a terahertz frequency quantum cascade laser

    Get PDF
    The use of quantum cascade lasers (QCLs) for laser feedback interferometry (LFI) has received significant attention since it enables a wide range of sensing applications without requiring a separate detector, and hence simplifies experimental apparatus [1]. LFA (based on the self-mixing effect) refers to the partial reinjection of the radiation emitted from a laser after reflection from a target; the injected radiation field then interacts with the intra-cavity field causing measurable variations of the QCL terminal voltage. The theory of LFI with conventional laser sources is well studied and explained by the Lang–Kobayashi model [2, 3]. However, while this enables the dynamic state populations and light interaction to be modelled, a linear relationship between the change in cavity light power, ∆P, and terminal voltage variation is commonly assumed, i.e. VSM ∝ ∆P [4, 5]. This is not strictly applicable to QCL structures since carrier transport is dominated by the mechanisms of electron subband alignment, intersubband scattering and photon driven transport between subbands with energy separations that change with applied bias (terminal voltage). We present experimental results of a QCL which departs significantly from this assumed linear behavior. We observe strong enhancement of the self-mixing signal in regions where the local gradient of the current-voltage (I–V) curve increases. We explain the origin of this signal using an extended density matrix (DM) approach [6] which accounts for coherent transport and interaction of the optical light field with the active region. The model is used to calculate the I–V characteristics of a bound-to-continuum (BTC) terahertz (THz) QCL and predict the effect of light variation on terminal voltage at a fixed drive current. This approach is shown to predict the experimental signal with good agreement

    Laser feedback interferometry with THz QCLs: A new technology for imaging and materials analysis

    Get PDF
    Considerable interest exists for sensing and imaging technologies in the terahertz (THz) spectral range, in particular for the interrogation of materials of an organic or biological nature. Development in THz quantum cascade lasers is seeing higher operating temperatures and peak output powers in pulsed mode, accentuating their place as the preferred source of coherent THz frequency radiation. Technological development of interferometric sensing schemes continues to take advantage of practical improvements in THz quantum cascade lasers. In this Summary, we give a brief overview of some recent developments in this regard
    corecore