1,015 research outputs found
Computational Complexity of interacting electrons and fundamental limitations of Density Functional Theory
One of the central problems in quantum mechanics is to determine the ground
state properties of a system of electrons interacting via the Coulomb
potential. Since its introduction by Hohenberg, Kohn, and Sham, Density
Functional Theory (DFT) has become the most widely used and successful method
for simulating systems of interacting electrons, making their original work one
of the most cited in physics. In this letter, we show that the field of
computational complexity imposes fundamental limitations on DFT, as an
efficient description of the associated universal functional would allow to
solve any problem in the class QMA (the quantum version of NP) and thus
particularly any problem in NP in polynomial time. This follows from the fact
that finding the ground state energy of the Hubbard model in an external
magnetic field is a hard problem even for a quantum computer, while given the
universal functional it can be computed efficiently using DFT. This provides a
clear illustration how the field of quantum computing is useful even if quantum
computers would never be built.Comment: 8 pages, 3 figures. v2: Version accepted at Nature Physics; differs
significantly from v1 (including new title). Includes an extra appendix (not
contained in the journal version) on the NP-completeness of Hartree-Fock,
which is taken from v
Laboratory study of spectral induced polarization responses of magnetite - Fe2+ redox reactions in porous media
Spectral Induced Polarization (SIP) phase anomalies in field surveys at contaminated sites have previously been shown to correlate with the occurrence of chemically reducing conditions and/or semiconductive minerals, but the reasons for this are not fully understood. We report a systematic laboratory investigation of the role of the semiconductive mineral magnetite and its interaction with redoxactive versus redox-inactive ions in producing such phase anomalies. The SIP responses of quartz sand with 5% magnetite in solutions containing redox-inactive Ca2+, and Ni2+, versus redox-active Fe2+ were measured across the pH ranges corresponding to adsorption of these metals to magnetite. With redox inactive ions Ca2+ and Ni2+, SIP phase response showed no changes across the pH range 4 to10, corresponding to their adsorption, showing ~30 mrad anomalies peaking at ~59 to 74 Hz. These large phase anomalies are probably caused by polarization of the magnetite-solution interfaces. With the redox-active ion Fe2+, frequency of peak phase res onse decreased progressively from ~46 to ~3 Hz as effluent pH increased from 4 to 7, corresponding to progressive adsorption of Fe2+ to the magnetite surface. The latter frequency (3 Hz) corresponds approximately with those of phase anomalies detected in field surveys reported elsewhere. We conclude that pH sensitivity arises from redox reactions between Fe2+ and magnetite surfaces, with transfer of electrical charge through the bulk mineral, as reported in other laboratory investigations. Our results confirm that SIP measurements are sensitive to redox reactions involving charge transfers between adsorbed ions and semiconductive minerals. Phase anomalies seen in field surveys of groundwater contamination and biostimulation may therefore be indicative of iron-reducing conditions, when semiconductive iron minerals such as magnetite are present
Comparison of algorithms that detect drug side effects using electronic healthcare databases
The electronic healthcare databases are starting to become more readily available and are thought to have excellent potential for generating adverse drug reaction signals. The Health Improvement Network (THIN) database is an electronic healthcare database containing medical information on over 11 million patients that has excellent potential for detecting ADRs. In this paper we apply four existing electronic healthcare database signal detecting algorithms (MUTARA, HUNT, Temporal Pattern Discovery and modified ROR) on the THIN database for a selection of drugs from six chosen drug families. This is the first comparison of ADR signalling algorithms that includes MUTARA and HUNT and enabled us to set a benchmark for the adverse drug reaction signalling ability of the THIN database. The drugs were selectively chosen to enable a comparison with previous work and for variety. It was found that no algorithm was generally superior and the algorithms’ natural thresholds act at variable stringencies. Furthermore, none of the algorithms perform well at detecting rare ADRs
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure
Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Ab initio alpha-alpha scattering
Processes involving alpha particles and alpha-like nuclei comprise a major
part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear
supernovae. In an effort towards understanding alpha processes from first
principles, we describe in this letter the first ab initio calculation of
alpha-alpha scattering. We use lattice effective field theory to describe the
low-energy interactions of nucleons and apply a technique called the adiabatic
projection method to reduce the eight-body system to an effective two-cluster
system. We find good agreement between lattice results and experimental phase
shifts for S-wave and D-wave scattering. The computational scaling with
particle number suggests that alpha processes involving heavier nuclei are also
within reach in the near future.Comment: 6 pages, 6 figure
Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi
Mechanical dormancy imposed by a hard fruit pericarp prevents premature seed germination. Here, the authors show that the pericarp of Lepidium didymum prevents germination by limiting water uptake and that dormancy can be released by fungal activity that weakens predetermined breaking zones in the fruit coat
The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response
The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control
- …
