8,430 research outputs found
Enantiopure and racemic radical-cation salts of B(malate)2−anions with BEDT-TTF
We have synthesized the first examples of radical-cation salts of BEDT-TTF with chiral borate anions, [B(malate)2]−, prepared from either enantiopure or racemic bidentate malate ligands. In the former case only one of two diastereoisomers of the borate anion is incorporated, while for the hydrated racemic salt one racemic pair of borate anions containing a R and a S malate ligand is incorporated. Their conducting and magnetic properties are reported. The tight-binding band calculation indicates that the chiral salt has an effective half-filled flat band, which is likely to be caused by the chiral structural feature
New semiconducting radical-cation salts of chiral bis(2-hydroxylpropylthio)ethylenedithio TTF
Electrocrystallisations of the chiral donor molecule S,S-bis(2-hydroxylpropylthio)ethylenedithiotetrathiafulvalene have produced a series of 1 : 1 semiconducting radical-cation salts with anions bromide, chloride, perchlorate and hexafluorophosphate. The flexibility and hydrogen bonding ability of the donor's chiral side chains lead to three quite different packing arrangements of donor cation pairs. Conductivity is maintained despite significant separations of donor cation pairs in some cases
Prospective memory functioning among ecstasy/polydrug users: evidence from the Cambridge Prospective Memory Test (CAMPROMPT)
Rationale:
Prospective memory (PM) deficits in recreational drug users have been documented in recent years. However, the assessment of PM has largely been restricted to self-reported measures that fail to capture the distinction between event-based and time-based PM. The aim of the present study is to address this limitation.
Objectives:
Extending our previous research, we augmented the range laboratory measures of PM by employing the CAMPROMPT test battery to investigate the impact of illicit drug use on prospective remembering in a sample of cannabis only, ecstasy/polydrug and non-users of illicit drugs, separating event and time-based PM performance. We also administered measures of executive function and retrospective memory in order to establish whether ecstasy/polydrug deficits in PM were mediated by group differences in these processes.
Results:
Ecstasy/polydrug users performed significantly worse on both event and time-based prospective memory tasks in comparison to both cannabis only and non-user groups. Furthermore, it was found that across the whole sample, better retrospective memory and executive functioning was associated with superior PM performance. Nevertheless, this association did not mediate the drug-related effects that were observed. Consistent with our previous study, recreational use of cocaine was linked to PM deficits.
Conclusions:
PM deficits have again been found among ecstasy/polydrug users, which appear to be unrelated to group differences in executive function and retrospective memory. However, the possibility that these are attributable to cocaine use cannot be excluded
Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment
The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution
Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle
Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time
Epiparasitic plants specialized on arbuscular mycorrhizal fungi
Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature
Central Exclusive Production in QCD
We investigate the theoretical description of the central exclusive
production process, h1+h2 -> h1+X+h2. Taking Higgs production as an example, we
sum logarithmically enhanced corrections appearing in the perturbation series
to all orders in the strong coupling. Our results agree with those originally
presented by Khoze, Martin and Ryskin except that the scale appearing in the
Sudakov factor, mu=0.62 \sqrt{\hat{s}}, should be replaced with
mu=\sqrt{\hat{s}}, where \sqrt{\hat{s}} is the invariant mass of the centrally
produced system. We confirm this result using a fixed-order calculation and
show that the replacement leads to approximately a factor 2 suppression in the
cross-section for central system masses in the range 100-500 GeV.Comment: 41 pages, 19 figures; minor typos fixed; version published in JHE
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field
Motivated by the couplings of the dilaton in four-dimensional effective
actions, we investigate the cosmological consequences of a scalar field coupled
both to matter and a Maxwell-type vector field. The vector field has a
background isotropy-violating component. New anisotropic scaling solutions
which can be responsible for the matter and dark energy dominated epochs are
identified and explored. For a large parameter region the universe expands
almost isotropically. Using that the CMB quadrupole is extremely sensitive to
shear, we constrain the ratio of the matter coupling to the vector coupling to
be less than 10^(-5). Moreover, we identify a large parameter region,
corresponding to a strong vector coupling regime, yielding exciting and viable
cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06
- …
