4,223 research outputs found

    Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere

    Get PDF
    We calculate the high temperature partition functions for SU(Nc) or U(Nc) gauge theories in the deconfined phase on S^1 x S^3, with scalars, vectors, and/or fermions in an arbitrary representation, at zero 't Hooft coupling and large Nc, using analytical methods. We compare these with numerical results which are also valid in the low temperature limit and show that the Bekenstein entropy bound resulting from the partition functions for theories with any amount of massless scalar, fermionic, and/or vector matter is always satisfied when the zero-point contribution is included, while the theory is sufficiently far from a phase transition. We further consider the effect of adding massive scalar or fermionic matter and show that the Bekenstein bound is satisfied when the Casimir energy is regularized under the constraint that it vanishes in the large mass limit. These calculations can be generalized straightforwardly for the case of a different number of spatial dimensions.Comment: 32 pages, 12 figures. v2: Clarifications added. JHEP versio

    Derivation of the blackfold effective theory

    Full text link
    We study fluctuations and deformations of black branes over length scales larger than the horizon radius. We prove that the Einstein equations for the perturbed p-brane yield, as constraints, the equations of the effective blackfold theory. We solve the Einstein equations for the perturbed geometry and show that it remains regular on and outside the black brane horizon. This study provides an ab initio derivation of the blackfold effective theory and gives explicit expressions for the metrics near the new black holes and black branes that result from it, to leading order in a derivative expansion.Comment: 20 pages. v4: Typo corrected in eq. (6.11) -- erratum in the published versio

    The holographic principle

    Get PDF
    There is strong evidence that the area of any surface limits the information content of adjacent spacetime regions, at 10^(69) bits per square meter. We review the developments that have led to the recognition of this entropy bound, placing special emphasis on the quantum properties of black holes. The construction of light-sheets, which associate relevant spacetime regions to any given surface, is discussed in detail. We explain how the bound is tested and demonstrate its validity in a wide range of examples. A universal relation between geometry and information is thus uncovered. It has yet to be explained. The holographic principle asserts that its origin must lie in the number of fundamental degrees of freedom involved in a unified description of spacetime and matter. It must be manifest in an underlying quantum theory of gravity. We survey some successes and challenges in implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2: reference adde

    AdS/BCFT Correspondence for Higher Curvature Gravity: An Example

    Full text link
    We consider the effects of higher curvature terms on a holographic dual description of boundary conformal field theory. Specifically, we consider three-dimensional gravity with a specific combination of Ricci tensor square and curvature scalar square, so called, new massive gravity. We show that a boundary entropy and an entanglement entropy are given by similar expression with those of the Einstein gravity case when we introduce an {\it effective} Newton's constant and an {\it effective} cosmological constant. We also show that the holographic g-theorem still holds in this extension, and we give some comments about the central charge dependence of boundary entropy in the holographic construction. In the same way, we consider new type black holes and comment on the boundary profile. Moreover, we reproduce these results through auxiliary field formalism in this specific higher curvature gravity.Comment: 27pages, minor corrections, accepted in JHE

    Cardy and Kerr

    Get PDF
    The Kerr/CFT correspondence employs the Cardy formula to compute the entropy of the left moving CFT states. This computation, which correctly reproduces the Bekenstein--Hawking entropy of the four-dimensional extremal Kerr black hole, is performed in a regime where the temperature is of order unity rather than in a high-temperature regime. We show that the comparison of the entropy of the extreme Kerr black hole and the entropy in the CFT can be understood within the Cardy regime by considering a D0-D6 system with the same entropic properties.Comment: 20 pages; LaTeX; JHEP format; v.2 references added, v.3 Section 4 adde

    Higher Curvature Gravity and the Holographic fluid dual to flat spacetime

    Get PDF
    Recent works have demonstrated that one can construct a (d+2) dimensional solution of the vacuum Einstein equations that is dual to a (d+1) dimensional fluid satisfying the incompressible Navier-Stokes equations. In one important example, the fluid lives on a fixed timelike surface in the flat Rindler spacetime associated with an accelerated observer. In this paper, we show that the shear viscosity to entropy density ratio of the fluid takes the universal value 1/4\pi in a wide class of higher curvature generalizations to Einstein gravity. Unlike the fluid dual to asymptotically anti-de Sitter spacetimes, here the choice of gravitational dynamics only affects the second order transport coefficients. We explicitly calculate these in five-dimensional Einstein-Gauss-Bonnet gravity and discuss the implications of our results.Comment: 13 pages; v2: modified abstract, added references; v3: added clarifying comments, modified discussio

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Near Horizon of 5D Rotating Black Holes from 2D Perspective

    Get PDF
    We study the CFT dual to five dimensional extremal rotating black holes, by investigating the two dimensional perspective of their near horizon geometry. From two dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that, our results are in perfect agreement with the generalization of Kerr/CFT approach to five dimensional extremal rotating black holes.Comment: The last version to appear in the European Physical Journal

    The entropy of black holes: a primer

    Full text link
    After recalling the definition of black holes, and reviewing their energetics and their classical thermodynamics, one expounds the conjecture of Bekenstein, attributing an entropy to black holes, and the calculation by Hawking of the semi-classical radiation spectrum of a black hole, involving a thermal (Planckian) factor. One then discusses the attempts to interpret the black-hole entropy as the logarithm of the number of quantum micro-states of a macroscopic black hole, with particular emphasis on results obtained within string theory. After mentioning the (technically cleaner, but conceptually more intricate) case of supersymmetric (BPS) black holes and the corresponding counting of the degeneracy of Dirichlet-brane systems, one discusses in some detail the ``correspondence'' between massive string states and non-supersymmetric Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6 December 2003), to appear in Poincare Seminar 2003 (Birkhauser
    corecore