4,223 research outputs found
Recommended from our members
Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions
Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere
We calculate the high temperature partition functions for SU(Nc) or U(Nc)
gauge theories in the deconfined phase on S^1 x S^3, with scalars, vectors,
and/or fermions in an arbitrary representation, at zero 't Hooft coupling and
large Nc, using analytical methods. We compare these with numerical results
which are also valid in the low temperature limit and show that the Bekenstein
entropy bound resulting from the partition functions for theories with any
amount of massless scalar, fermionic, and/or vector matter is always satisfied
when the zero-point contribution is included, while the theory is sufficiently
far from a phase transition. We further consider the effect of adding massive
scalar or fermionic matter and show that the Bekenstein bound is satisfied when
the Casimir energy is regularized under the constraint that it vanishes in the
large mass limit. These calculations can be generalized straightforwardly for
the case of a different number of spatial dimensions.Comment: 32 pages, 12 figures. v2: Clarifications added. JHEP versio
Derivation of the blackfold effective theory
We study fluctuations and deformations of black branes over length scales
larger than the horizon radius. We prove that the Einstein equations for the
perturbed p-brane yield, as constraints, the equations of the effective
blackfold theory. We solve the Einstein equations for the perturbed geometry
and show that it remains regular on and outside the black brane horizon. This
study provides an ab initio derivation of the blackfold effective theory and
gives explicit expressions for the metrics near the new black holes and black
branes that result from it, to leading order in a derivative expansion.Comment: 20 pages. v4: Typo corrected in eq. (6.11) -- erratum in the
published versio
The holographic principle
There is strong evidence that the area of any surface limits the information
content of adjacent spacetime regions, at 10^(69) bits per square meter. We
review the developments that have led to the recognition of this entropy bound,
placing special emphasis on the quantum properties of black holes. The
construction of light-sheets, which associate relevant spacetime regions to any
given surface, is discussed in detail. We explain how the bound is tested and
demonstrate its validity in a wide range of examples.
A universal relation between geometry and information is thus uncovered. It
has yet to be explained. The holographic principle asserts that its origin must
lie in the number of fundamental degrees of freedom involved in a unified
description of spacetime and matter. It must be manifest in an underlying
quantum theory of gravity. We survey some successes and challenges in
implementing the holographic principle.Comment: 52 pages, 10 figures, invited review for Rev. Mod. Phys; v2:
reference adde
AdS/BCFT Correspondence for Higher Curvature Gravity: An Example
We consider the effects of higher curvature terms on a holographic dual
description of boundary conformal field theory. Specifically, we consider
three-dimensional gravity with a specific combination of Ricci tensor square
and curvature scalar square, so called, new massive gravity. We show that a
boundary entropy and an entanglement entropy are given by similar expression
with those of the Einstein gravity case when we introduce an {\it effective}
Newton's constant and an {\it effective} cosmological constant. We also show
that the holographic g-theorem still holds in this extension, and we give some
comments about the central charge dependence of boundary entropy in the
holographic construction. In the same way, we consider new type black holes and
comment on the boundary profile. Moreover, we reproduce these results through
auxiliary field formalism in this specific higher curvature gravity.Comment: 27pages, minor corrections, accepted in JHE
Cardy and Kerr
The Kerr/CFT correspondence employs the Cardy formula to compute the entropy
of the left moving CFT states. This computation, which correctly reproduces the
Bekenstein--Hawking entropy of the four-dimensional extremal Kerr black hole,
is performed in a regime where the temperature is of order unity rather than in
a high-temperature regime. We show that the comparison of the entropy of the
extreme Kerr black hole and the entropy in the CFT can be understood within the
Cardy regime by considering a D0-D6 system with the same entropic properties.Comment: 20 pages; LaTeX; JHEP format; v.2 references added, v.3 Section 4
adde
Higher Curvature Gravity and the Holographic fluid dual to flat spacetime
Recent works have demonstrated that one can construct a (d+2) dimensional
solution of the vacuum Einstein equations that is dual to a (d+1) dimensional
fluid satisfying the incompressible Navier-Stokes equations. In one important
example, the fluid lives on a fixed timelike surface in the flat Rindler
spacetime associated with an accelerated observer. In this paper, we show that
the shear viscosity to entropy density ratio of the fluid takes the universal
value 1/4\pi in a wide class of higher curvature generalizations to Einstein
gravity. Unlike the fluid dual to asymptotically anti-de Sitter spacetimes,
here the choice of gravitational dynamics only affects the second order
transport coefficients. We explicitly calculate these in five-dimensional
Einstein-Gauss-Bonnet gravity and discuss the implications of our results.Comment: 13 pages; v2: modified abstract, added references; v3: added
clarifying comments, modified discussio
Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean
The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human
Near Horizon of 5D Rotating Black Holes from 2D Perspective
We study the CFT dual to five dimensional extremal rotating black holes, by
investigating the two dimensional perspective of their near horizon geometry.
From two dimensional point of view, we show that both gauge fields, related to
the two rotations, appear in the same manner in the asymptotic symmetry and in
the associated central charge. We find that, our results are in perfect
agreement with the generalization of Kerr/CFT approach to five dimensional
extremal rotating black holes.Comment: The last version to appear in the European Physical Journal
The entropy of black holes: a primer
After recalling the definition of black holes, and reviewing their energetics
and their classical thermodynamics, one expounds the conjecture of Bekenstein,
attributing an entropy to black holes, and the calculation by Hawking of the
semi-classical radiation spectrum of a black hole, involving a thermal
(Planckian) factor. One then discusses the attempts to interpret the black-hole
entropy as the logarithm of the number of quantum micro-states of a macroscopic
black hole, with particular emphasis on results obtained within string theory.
After mentioning the (technically cleaner, but conceptually more intricate)
case of supersymmetric (BPS) black holes and the corresponding counting of the
degeneracy of Dirichlet-brane systems, one discusses in some detail the
``correspondence'' between massive string states and non-supersymmetric
Schwarzschild black holes.Comment: 51 pages, 4 figures, talk given at the "Poincare seminar" (Paris, 6
December 2003), to appear in Poincare Seminar 2003 (Birkhauser
- …
