20 research outputs found

    Cage Matching: Head to Head Competition Experiments of an Invasive Plant Species from Different Regions as a Means to Test for Differentiation

    Get PDF
    Many hypotheses are prevalent in the literature predicting why some plant species can become invasive. However, in some respects, we lack a standard approach to compare the breadth of various studies and differentiate between alternative explanations. Furthermore, most of these hypotheses rely on ‘changes in density’ of an introduced species to infer invasiveness. Here, we propose a simple method to screen invasive plant species for potential differences in density effects between novel regions. Studies of plant competition using density series are a fundamental tool applied to virtually every aspect of plant population ecology to better understand evolution. Hence, we use a simple density series with substitution contrasting the performance of Centaurea solstitialis in monoculture (from one region) to mixtures (seeds from two regions). All else being equal, if there is no difference between the introduced species in the two novel regions compared, Argentina and California, then there should be no competitive differences between intra and inter-regional competition series. Using a replicated regression design, seeds of each species were sown in the greenhouse at 5 densities in monoculture and mixed and grown till onset of flowering. Centaurea seeds from California had higher germination while seedlings had significantly greater survival than Argentina. There was no evidence for density dependence in any measure for the California region but negative density dependence was detected in the germination of seeds from Argentina. The relative differences in competition also differed between regions with no evidence of differential competitive effects of seeds from Argentina in mixture versus monoculture while seeds from California expressed a relative cost in germination and relative growth rate in mixtures with Argentina. In the former instance, lack of difference does not mean ‘no ecological differences’ but does suggest that local adaptation in competitive abilities has not occurred. Importantly, this method successfully detected differences in the response of an invasive species to changes in density between novel regions which suggests that it is a useful preliminary means to explore invasiveness

    Disturbance-mediated competition: The interacting roles of inundation regime and mechanical and herbicidal control in determining native and invasive plant abundance

    No full text
    Disturbance is a key component of many successful plant invasions. However, interactions among natural and anthropogenic disturbances and effects of these interacting disturbances on invasive plants and desired vegetation are rarely examined. We investigated the effect of anthropogenic disturbance (herbicidal and mechanical) along a natural inundation gradient (20-282 days) on the biomass and resource allocation of the invasive wetland plant, alligator weed (Alternanthera philoxeroides), and two co-occurring competitor plants, the introduced grass, kikuyu (Pennisetum clandestinum), and the native grass, couch (Cynodon dactylon), over a 2-year period. In the absence of additional disturbance, kikuyu biomass was negatively affected, alligator weed biomass was positively affected, and couch biomass was not affected by inundation disturbance. In addition, kikuyu was not affected by the selective removal of alligator weed, while couch increased in wetter habitats where kikuyu was absent due to inundation stress. This suggests that kikuyu is a superior competitor in drier habitats and inundation facilitates the invasion of alligator weed, while couch is an inferior competitor to both kikuyu and alligator weed and is therefore suppressed across its entire niche by these two introduced species. Mowing alone had no effect on the biomass of the species, suggesting the plants are equally tolerant of shoot removal. Selective herbicide reduced alligator weed biomass by 97.5% and the combination of selective herbicide and mowing reduced the biomass of alligator weed significantly more than herbicide alone, by 98.6% compared with un-manipulated controls. To predict community change and prevent sequential exotic plant invasions after weed removal, it is necessary to consider the interacting effects of disturbance and the niche space of invasive species in the local propagule pool
    corecore