15 research outputs found

    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    Get PDF
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals

    Societal issues concerning the application of artificial intelligence in medicine

    Get PDF
    Medicine is becoming an increasingly data-centred discipline and, beyond classical statistical approaches, artificial intelligence (AI) and, in particular, machine learning (ML) are attracting much interest for the analysis of medical data. It has been argued that AI is experiencing a fast process of commodification. This characterization correctly reflects the current process of industrialization of AI and its reach into society. Therefore, societal issues related to the use of AI and ML should not be ignored any longer and certainly not in the medical domain. These societal issues may take many forms, but they all entail the design of models from a human-centred perspective, incorporating human-relevant requirements and constraints. In this brief paper, we discuss a number of specific issues affecting the use of AI and ML in medicine, such as fairness, privacy and anonymity, explainability and interpretability, but also some broader societal issues, such as ethics and legislation. We reckon that all of these are relevant aspects to consider in order to achieve the objective of fostering acceptance of AI- and ML-based technologies, as well as to comply with an evolving legislation concerning the impact of digital technologies on ethically and privacy sensitive matters. Our specific goal here is to reflect on how all these topics affect medical applications of AI and ML. This paper includes some of the contents of the “2nd Meeting of Science and Dialysis: Artificial Intelligence,” organized in the Bellvitge University Hospital, Barcelona, Spain.Peer ReviewedPostprint (author's final draft

    Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to Brain Computer Interfacing and Human Augmentation

    Get PDF
    Abstract Intracortical microelectrodes have shown great success in enabling locked-in patients to interact with computers, robotic limbs, and their own electrically driven limbs. The recent advances have inspired world-wide enthusiasm resulting in billions of dollars invested in federal and industrial sponsorships to understanding the brain for rehabilitative applications. Additionally, private philanthropists have also demonstrated excitement in the field by investing in the use of brain interfacing technologies as a means to human augmentation. While the promise of incredible technologies is real, caution must be taken as implications regarding optimal performance and unforeseen side effects following device implantation into the brain are not fully characterized. The current study is aimed to quantify any motor deficit caused by microelectrode implantation in the motor cortex of healthy rats compared to non-implanted controls. Following electrode insertion, rats were tested on an open-field grid test to study gross motor function and a ladder test to study fine motor function. It was discovered that rats with chronically indwelling intracortical microelectrodes exhibited up to an incredible 527% increase in time to complete the fine motor task. This initial study defines the need for further and more robust behavioral testing of potential unintentional harm caused by microelectrode implantation

    Detection of Error Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous Movements

    Get PDF
    BACKGROUND: Brain-machine interfaces (BMIs) can translate the neuronal activity underlying a user’s movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be corrected online after being detected and (ii) adaptive BMI decoding algorithm can be updated to make fewer errors in the future. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that error events can be detected from human electrocorticography (ECoG) during a continuous task with high precision, given a temporal tolerance of 300–400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. CONCLUSIONS/SIGNIFICANCE: The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation

    Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics.

    Get PDF
    Epidural electrical stimulation (EES) of the spinal cord and real-time processing of gait kinematics are powerful methods for the study of locomotion and the improvement of motor control after injury or in neurological disorders. Here, we describe equipment and surgical procedures that can be used to acquire chronic electromyographic (EMG) recordings from leg muscles and to implant targeted spinal cord stimulation systems that remain stable up to several months after implantation in rats and nonhuman primates. We also detail how to exploit these implants to configure electrical spinal cord stimulation policies that allow control over the degree of extension and flexion of each leg during locomotion. This protocol uses real-time processing of gait kinematics and locomotor performance, and can be configured within a few days. Once configured, stimulation bursts are delivered over specific spinal cord locations with precise timing that reproduces the natural spatiotemporal activation of motoneurons during locomotion. These protocols can also be easily adapted for the safe implantation of systems in the vicinity of the spinal cord and to conduct experiments involving real-time movement feedback and closed-loop controllers
    corecore