305 research outputs found
CityComfort+: A Simulation-Based Method for Predicting Mean Radiant Temperature in Dense Urban Areas
postprin
Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea
Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax
Molecular Characterization of the Gastrula in the Turtle Emys orbicularis: An Evolutionary Perspective on Gastrulation
Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Urban form and microclimate: a rapid assessment method for pedestrian thermal comfort
Conference Theme: Climate Adaptation FuturesUrban residents experience a highly transient climate. Within this context, natural conditions are
altered by the artificial landscape of buildings and infrastructure. The effect of urban form on
microclimate is relevant to human comfort and temperature stress, a critical issue often
overlooked. As the trend towards urbanization continues, policy makers and planners will need
to address microclimate in the design of environments that simultaneously promotes human
health and sustainability ...postprin
Experimental and computational investigation of co production and dispersion in an automotive repair shop
Carbon monoxide (CO), a highly toxic gas, is produced during the incomplete combustion of carbon-based fuels. In indoor environments, high CO concentrations constitute a serious occupational health hazard; this is especially true in the case of automotive repair shop (ARS) employees who are exposed on a daily basis to vehicle exhaust streams. The present study focuses on the experimental investigation and numerical simulation of CO production and dispersion inside an ARS facility. Detailed measurements of CO concentration, vehicle traffic and ventilation system velocities are performed; the obtained data are appropriately formulated to provide quantitative information for modelling purposes. A detailed Computational Fluid Dynamics simulation of the developing transient flow-field is performed. The numerical results are validated using the experimental data; an overall good qualitative and quantitative agreement is achieved. Aiming to improve the energy efficiency of the mechanical ventilation system, three alternative scenarios are investigated; it is shown that the utilization of a dynamic ventilation system may result in significant energy consumption benefits, while, at the same time, CO concentrations remain below the values suggested by current occupational health legislation. The obtained results may be utilized to assist the design of mechanical ventilation systems for ARS facilities
Differentiation-Induced Remodelling of Store-Operated Calcium Entry Is Independent of Neuronal or Glial Phenotype but Modulated by Cellular Context
Neurogenesis is a complex process leading to the generation of neuronal networks and glial cell types from stem cells or intermediate progenitors. Mapping subcellular and molecular changes accompanying the switch from proliferation to differentiation is vital for developing therapeutic targets for neurological diseases. Neuronal (N-type) and glial (S-type) phenotypes within the SH-SY5Y neuroblastoma cell line have distinct differentiation responses to 9-cis-retinoic acid (9cRA). In both cell phenotypes, these were accompanied at the single cell level by an uncoupling of Ca2+ store release from store-operated Ca2+ entry (SOCE), mediated by changes in the expression of calcium release-activated calcium pore proteins. This remodelling of calcium signalling was moderated by the predominant cell phenotype within the population. N- and S-type cells differed markedly in their phenotypic stability after withdrawal of the differentiation inducer, with the phenotypic stability of S-type cells, both morphologically and with respect to SOCE properties, in marked contrast to the lability of the N-type phenotype. Furthermore, the SOCE response of I-type cells, a presumed precursor to both N- and S-type cells, varied markedly in different cell environments. These results demonstrate the unique biology of neuronal and glial derivatives of common precursors and suggest that direct or indirect interactions between cell types are vital components of neurogenesis that need to be considered in experimental models.</p
Prenatal exposures and exposomics of asthma
This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
Association between respiratory tract diseases and secondhand smoke exposure among never smoking flight attendants: a cross-sectional survey
<p>Abstract</p> <p>Background</p> <p>Little is known about long-term adverse health consequences experienced by flight attendants exposed to secondhand smoke (SHS) during the time smoking was allowed on airplanes. We undertook this study to evaluate the association between accumulated flight time in smoky airplane cabins and respiratory tract diseases in a cohort of never smoking flight attendants.</p> <p>Methods</p> <p>We conducted a mailed survey in a cohort of flight attendants. Of 15,000 mailed questionnaires, 2053 (14%) were completed and returned. We excluded respondents with a personal history of smoking (n = 748) and non smokers with a history of respiratory tract diseases before the age of 18 years (n = 298). The remaining 1007 respondents form the study sample.</p> <p>Results</p> <p>The overall study sample was predominantly white (86%) and female (89%), with a mean age of 54 years. Overall, 69.7% of the respondents were diagnosed with at least one respiratory tract disease. Among these respondents, 43.4% reported a diagnosis of sinusitis, 40.3% allergies, 30.8% bronchitis, 23.2% middle ear infections, 13.6% asthma, 13.4% hay fever, 12.5% pneumonia, and 2.0% chronic obstructive pulmonary disease. More hours in a smoky cabin were observed to be significantly associated with sinusitis (OR = 1.21; p = 0.024), middle ear infections (OR = 1.30; p = 0.006), and asthma (OR = 1.26; p = 0.042).</p> <p>Conclusion</p> <p>We observed a significant association between hours of smoky cabin exposure and self-reported reported sinusitis, middle ear infections, and asthma. Our findings suggest a dose-response between duration of SHS exposure and diseases of the respiratory tract. Our findings add additional evidence to the growing body of knowledge supporting the need for widespread implementation of clean indoor air policies to decrease the risk of adverse health consequences experienced by never smokers exposed to SHS.</p
Surveillance of Airborne Adenovirus and Mycoplasma pneumoniae in a Hospital Pediatric Department
This investigation evaluated the distributions of airborne adenovirus and Mycoplasma pneumoniae in public areas in the pediatric department of Children's Hospital in northern Taiwan. The airborne viral and bacterial concentrations were evaluated twice a week for a year using filter sampling with an airflow rate of 12 liters per minute for eight hours in the pediatric outpatient department and 24 hours in the pediatric emergency room. Real-time polymerase chain reaction assays were conducted for analysis. Approximately 18% of the air samples from the pediatric emergency room were found to contain adenovirus. Approximately forty-six percent of the air samples from the pediatric outpatient department contained Mycoplasma pneumoniae DNA products. High detection rates of airborne adenovirus DNA were obtained in July and August in the pediatric public areas. Airborne Mycoplasma pneumoniae was detected only in July in the pediatric emergency room and the peak levels were found from August to January in the pediatric outpatient department. Airborne particles that contained adenovirus and Mycoplasma pneumoniae were the most prevalent in the pediatric public areas. The potential relationship between these airborne viral/bacterial particles and human infection should be examined further
- …
