1,252 research outputs found
Consequences of converting graded to action potentials upon neural information coding and energy efficiency
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation
Healthcare providers' views on the acceptability of financial incentives for breastfeeding:a qualitative study
BACKGROUND: Despite a gradual increase in breastfeeding rates, overall in the UK there are wide variations, with a trend towards breastfeeding rates at 6–8 weeks remaining below 40% in less affluent areas. While financial incentives have been used with varying success to encourage positive health related behaviour change, there is little research on their use in encouraging breastfeeding. In this paper, we report on healthcare providers’ views around whether using financial incentives in areas with low breastfeeding rates would be acceptable in principle. This research was part of a larger project looking at the development and feasibility testing of a financial incentive scheme for breastfeeding in preparation for a cluster randomised controlled trial. METHODS: Fifty–three healthcare providers were interviewed about their views on financial incentives for breastfeeding. Participants were purposively sampled to include a wide range of experience and roles associated with supporting mothers with infant feeding. Semi-structured individual and group interviews were conducted. Data were analysed thematically drawing on the principles of Framework Analysis. RESULTS: The key theme emerging from healthcare providers’ views on the acceptability of financial incentives for breastfeeding was their possible impact on ‘facilitating or impeding relationships’. Within this theme several additional aspects were discussed: the mother’s relationship with her healthcare provider and services, with her baby and her family, and with the wider community. In addition, a key priority for healthcare providers was that an incentive scheme should not impact negatively on their professional integrity and responsibility towards women. CONCLUSION: Healthcare providers believe that financial incentives could have both positive and negative impacts on a mother’s relationship with her family, baby and healthcare provider. When designing a financial incentive scheme we must take care to minimise the potential negative impacts that have been highlighted, while at the same time recognising the potential positive impacts for women in areas where breastfeeding rates are low
An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-
We describe an experiment to search for a new vector boson A' with weak
coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass
range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings
arise naturally from a small kinetic mixing of the "dark photon" A' with the
photon -- one of the very few ways in which new forces can couple to the
Standard Model -- and have received considerable attention as an explanation of
various dark matter related anomalies. A' bosons are produced by radiation off
an electron beam, and could appear as narrow resonances with small production
cross-section in the trident e+e- spectrum. We summarize the experimental
approach described in a proposal submitted to Jefferson Laboratory's PAC35,
PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of
the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory
(CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten
wire mesh targets, and measures the resulting e+e- pairs to search for the A'
using the High Resolution Spectrometer and the septum magnet in Hall A. With a
~1 month run, APEX will achieve very good sensitivity because the statistics of
e+e- pairs will be ~10,000 times larger in the explored mass range than any
previous search for the A' boson. These statistics and the excellent mass
resolution of the spectrometers allow sensitivity to alpha'/alpha one to three
orders of magnitude below current limits, in a region of parameter space of
great theoretical and phenomenological interest. Similar experiments could also
be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table
Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants
Cosmic Ray Anomalies from the MSSM?
The recent positron excess in cosmic rays (CR) observed by the PAMELA
satellite may be a signal for dark matter (DM) annihilation. When these
measurements are combined with those from FERMI on the total () flux
and from PAMELA itself on the ratio, these and other results are
difficult to reconcile with traditional models of DM, including the
conventional mSUGRA version of Supersymmetry even if boosts as large as
are allowed. In this paper, we combine the results of a previously
obtained scan over a more general 19-parameter subspace of the MSSM with a
corresponding scan over astrophysical parameters that describe the propagation
of CR. We then ascertain whether or not a good fit to this CR data can be
obtained with relatively small boost factors while simultaneously satisfying
the additional constraints arising from gamma ray data. We find that a specific
subclass of MSSM models where the LSP is mostly pure bino and annihilates
almost exclusively into pairs comes very close to satisfying these
requirements. The lightest in this set of models is found to be
relatively close in mass to the LSP and is in some cases the nLSP. These models
lead to a significant improvement in the overall fit to the data by an amount
dof in comparison to the best fit without Supersymmetry
while employing boosts . The implications of these models for future
experiments are discussed.Comment: 57 pages, 31 figures, references adde
Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum
Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology
Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?
It is well known that the dark matter dominates the dynamics of galaxies and
clusters of galaxies. Its constituents remain a mystery despite an assiduous
search for them over the past three decades. Recent results from the
satellite-based PAMELA experiment detect an excess in the positron fraction at
energies between 10-100 GeV in the secondary cosmic ray spectrum. Other
experiments namely ATIC, HESS and FERMI show an excess in the total electron
(\ps + \el) spectrum for energies greater 100 GeV. These excesses in the
positron fraction as well as the electron spectrum could arise in local
astrophysical processes like pulsars, or can be attributed to the annihilation
of the dark matter particles. The second possibility gives clues to the
possible candidates for the dark matter in galaxies and other astrophysical
systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear
in Pramana as topical revie
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing
Voltage-gated sodium channels are vital membrane proteins essential for electrical signalling; in humans, they are key targets for the development of pharmaceutical drugs. Here we report the crystal structure of an open-channel conformation of NavMs, the bacterial channel pore from the marine bacterium Magnetococcus sp. (strain MC-1). It differs from the recently published crystal structure of a closed form of a related bacterial sodium channel (NavAb) by having its internal cavity accessible to the cytoplasmic surface as a result of a bend/rotation about a central residue in the carboxy-terminal transmembrane segment. This produces an open activation gate of sufficient diameter to allow hydrated sodium ions to pass through. Comparison of the open and closed structures provides new insight into the features of the functional states present in the activation cycles of sodium channels and the mechanism of channel opening and closing
- …
