6,351 research outputs found
The TLR2/6 ligand PAM2CSK4 is a Th2 polarizing adjuvant in Leishmania major and Brugia malayi murine vaccine models.
Toll-like receptors (TLRs) play an important role in the innate and adaptive immune responses to pathogens, and are the target of new vaccine adjuvants. TLR2 plays a role in parasite recognition and activation of immune responses during cutaneous leishmaniasis infection, suggesting that TLR2 could be targeted by adjuvants for use in Leishmania vaccines. We therefore explored using Pam2CSK4 (Pam2) and Pam3CSK4 (Pam3) lipopeptide adjuvants, which activate TLR2/6 and TLR2/1 heterodimers respectively, in vaccine models for parasitic infections.The use of lipopeptide adjuvants was explored using two vaccine models. For cutaneous leishmaniasis, the lipopeptide adjuvants Pam2 and Pam3 were compared to that of the Th1-driving double-stranded DNA TLR9 agonist CpG for their ability to improve the efficacy of the autoclaved Leishmania major (ALM) vaccine to protect against L. major infection. The ability of Pam2 to enhance the efficacy of a soluble Brugia malayi microfilariae extract (BmMfE) vaccine to protect against filarial infection was also assessed in a peritoneal infection model of B. malayi filariasis. Parasite antigen-specific cellular and humoral immune responses were assessed post-challenge.The use of lipopeptides in ALM-containing vaccines did not provide any protection upon infection with L. major, and Pam2 exacerbated the disease severity in vaccinated mice post-challenge. Pam2, and to a lesser extent Pam3, were able to elevate antigen-specific immune responses post-challenge in this model, but these responses displayed a skewed Th2 phenotype as characterised by elevated levels of IgG1. In the B. malayi vaccine model, the use of Pam2 as an adjuvant with BmMfE induced significant protective immunity to the same level as inclusion of an Alum adjuvant. Here, both Pam2 and Alum were found to enhance antigen-specific antibody production post-challenge, and Pam2 significantly elevated levels of antigen-specific IL-4, IL-5 and IL-13 produced by splenocytes.These data indicate that TLR2/6-targeting ligands could be considered as adjuvants for vaccines that require robust Th2 and/or antibody-dependent immunity
Walking together: behavioural signatures of psychological crowds
Research in crowd psychology has demonstrated key differences between the behaviour of physical crowds where members are in the same place at the same time, and the collective behaviour of psychological crowds where the entire crowd perceive themselves to be part of the same group through a shared social identity. As yet, no research has investigated the behavioural effects that a shared social identity has on crowd movement at a pedestrian level. To investigate the direction and extent to which social identity influences the movement of crowds, 280 trajectories were tracked as participants walked in one of two conditions: 1) a psychological crowd primed to share a social identity; 2) a naturally occurring physical crowd. Behaviour was compared both within and between the conditions. In comparison to the physical crowd, members of the psychological crowd i) walked slower, ii) walked further, and iii) maintained closer proximity. In addition, pedestrians who had to manoeuvre around the psychological crowd behaved differently to pedestrians who had to manoeuvre past the naturally occurring crowd. We conclude that the behavioural differences between physical and psychological crowds must be taken into account when considering crowd behaviour in event safety management and computer models of crowds
Foot Bone in Vivo: Its Center of Mass and Centroid of Shape
This paper studies foot bone geometrical shape and its mass distribution and
establishes an assessment method of bone strength. Using spiral CT scanning,
with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot
bones in vivo and investigate the relationship between the bone's external
shape and internal structure. This analysis is explored on the bases of the
bone's center of mass and its centroid of shape. We observe the phenomenon of
superposition of center of mass and centroid of shape fairly precisely,
indicating a possible appearance of biomechanical organism. We investigate two
aspects of the geometrical shape, (i) distance between compact bone's centroid
of shape and that of the bone and (ii) the mean radius of the same density bone
issue relative to the bone's centroid of shape. These quantities are used to
interpret the influence of different physical exercises imposed on bone
strength, thereby contributing to an alternate assessment technique to bone
strength.Comment: 9 pages, 4 figure
In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse
Eclipses of the single-line spectroscopic binary star, epsilon Aurigae,
provide an opportunity to study the poorly-defined companion. We used the MIRC
beam combiner on the CHARA array to create interferometric images during
eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk
that is opaque and tilted, and therefore exclude alternative models for the
system. These data constrain the geometry and masses of the components,
providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
Skyrmion fluctuations at a first-order phase transition boundary
Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature - magnetic field phase diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the μeV energy scale. Here, we use a coherent x-ray correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a compressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6
A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand
We document magnetostratigraphies for three river sections (Turakina, Rangitikei, Wanganui) in Wanganui Basin and interpret them as corresponding to the Upper Gilbert, the Gauss and lower Matuyama Chrons of the Geomagnetic Polarity Timescale, in agreement with foraminiferal biostratigraphic datums. The Gauss-Gilbert transition (3.58 Ma) is located in both the Turakina and Wanganui River sections, while the Gauss-Matuyama transition (2.58 Ma) is located in all three sections, as are the lower and upper boundaries of the Mammoth (3.33–3.22 Ma) and Kaena (3.11–3.04 Ma) Subchrons. Our interpretations are based in part on the re-analysis of existing datasets and in part on the acquisition and analysis of new data, particularly for the Wanganui River section. The palaeomagnetic dates of these six horizons provide the only numerical age control for a thick (up to 2000 m) mudstone succession (Tangahoe Mudstone) that accumulated chiefly in upper bathyal and outer neritic palaeoenvironments. In the Wanganui River section the mean sediment accumulation rate is estimated to have been about 1.8 m/k.y., in the Turakina section it was about 1.5 m/k.y., and in the Rangitikei section, the mean rate from the beginning of the Mammoth Subchron to the Hautawa Shellbed was about 1.1 m/k.y. The high rates may be associated with the progradation of slope clinoforms northward through the basin. This new palaeomagnetic timescale allows revised correlations to be made between cyclothems in the Rangitikei River section and the global Oxygen Isotope Stages (OIS) as represented in Ocean Drilling Program (ODP) Site 846. The 16 depositional sequences between the end of the Mammoth Subchron and the Gauss-Matuyama Boundary are correlated with OIS MG2 to 100. The cyclothems average 39 k.y. in duration in our age model, which is close to the 41 k.y. duration of the orbital obliquity cycles. We support the arguments advanced recently in defence of the need for local New Zealand stages as a means of classifying New Zealand sedimentary successions, and strongly oppose the proposal to move stage boundaries to selected geomagnetic polarity transitions. The primary magnetisation of New Zealand mudstone is frequently overprinted with secondary components of diagenetic origin, and hence it is often difficult to obtain reliable magnetostratigraphic records. We suggest specific approaches, analytical methods, and criteria to help ensure robustness and coherency in the palaeomagnetic identification of chron boundaries in typical New Zealand Cenozoic mudstone successions
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
<i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis
Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
- …
