825 research outputs found
Black Branes in a Box: Hydrodynamics, Stability, and Criticality
We study the effective hydrodynamics of neutral black branes enclosed in a
finite cylindrical cavity with Dirichlet boundary conditions. We focus on how
the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing
the metric at the cavity wall increases the rigidity of the black brane by
hindering gradients of the redshift on the wall. In the effective fluid, this
is reflected in the growth of the squared speed of sound. As a consequence,
when the cavity is smaller than a critical radius the black brane becomes
dynamically stable. The correlation with the change in thermodynamic stability
is transparent in our approach. We compute the bulk and shear viscosities of
the black brane and find that they do not run with R. We find mean-field theory
critical exponents near the critical point.Comment: 23 pages, 3 figures. v2: added comments on first-order phase
transitio
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Recommended from our members
Measuring velocity and turbulent diffusivity in wall-flow filters using compressed sensing magnetic resonance
Gas-phase compressed sensing magnetic resonance methods have been used to image gas flow velocity and turbulent diffusivity in wall-flow particulate filters. Two-dimensional magnetic resonance velocity imaging was used to observe the local distribution of gas velocity in the direction of superficial flow (z) in the entrance and exit regions of the filter at an in-plane spatial resolution of 140 µm (x) × 140 µm (y) and 140 µm (x) × 390 µm (z) perpendicular to and parallel with the direction of superficial flow, respectively. Images were acquired in 14 min. Three-dimensional images of the turbulent diffusivity were acquired at a spatial resolution of 280 µm (x) × 280 µm (y) × 1250 µm (z) for channel Reynolds numbers, Rec, of 210, 360, 720 and 1140. These data provide evidence of regions of turbulence inside the filter that has not been predicted by earlier numerical simulations. For Rec = 1140, a three-dimensional velocity image was also obtained at the same spatial resolution as the image of turbulent diffusivity; the data acquisition time was 2 h. Co-registration of these two images enables visualisation of the spatial extent and magnitude of these two characteristics of the flow field.JDC would like to thank Johnson Matthey and the EPSRC for a CASE award (award reference 1628588)
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
Loop Quantum Gravity
The problem of finding the quantum theory of the gravitational field, and
thus understanding what is quantum spacetime, is still open. One of the most
active of the current approaches is loop quantum gravity. Loop quantum gravity
is a mathematically well-defined, non-perturbative and background independent
quantization of general relativity, with its conventional matter couplings. The
research in loop quantum gravity forms today a vast area, ranging from
mathematical foundations to physical applications. Among the most significative
results obtained are: (i) The computation of the physical spectra of
geometrical quantities such as area and volume; which yields quantitative
predictions on Planck-scale physics. (ii) A derivation of the
Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical
picture of the microstructure of quantum physical space, characterized by a
polymer-like Planck scale discreteness. This discreteness emerges naturally
from the quantum theory and provides a mathematically well-defined realization
of Wheeler's intuition of a spacetime ``foam''. Long standing open problems
within the approach (lack of a scalar product, overcompleteness of the loop
basis, implementation of reality conditions) have been fully solved. The weak
part of the approach is the treatment of the dynamics: at present there exist
several proposals, which are intensely debated. Here, I provide a general
overview of ideas, techniques, results and open problems of this candidate
theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34
page
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer
Background
Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease.
Result
Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive
Quantization of Midisuperspace Models
We give a comprehensive review of the quantization of midisuperspace models.
Though the main focus of the paper is on quantum aspects, we also provide an
introduction to several classical points related to the definition of these
models. We cover some important issues, in particular, the use of the principle
of symmetric criticality as a very useful tool to obtain the required
Hamiltonian formulations. Two main types of reductions are discussed: those
involving metrics with two Killing vector fields and spherically symmetric
models. We also review the more general models obtained by coupling matter
fields to these systems. Throughout the paper we give separate discussions for
standard quantizations using geometrodynamical variables and those relying on
loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
- …
