10 research outputs found

    Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression

    Get PDF
    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence

    γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells.

    No full text
    A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity

    A multispectral immunohistochemistry panel to investigate γδ T cells and butyrophilin molecules in the tumour microenvironment

    No full text
    Conventional immunohistochemistry methods though once fundamental for the individual staining of cell markers, have now been superseded by multispectral immunohistochemistry (mIHC). mIHC enables simultaneous detection of multiple cell markers in situ using single formalin-fixed paraffin-embedded (FFPE) tissue sections. In addition to conserving patient tissue specimens, the ability to visualise more than one marker on individual cells allows for further refining of cell phenotypes, and provides insight into cell-to-cell interactions and spatial arrangements across single tissue sections. Here, a comprehensive protocol is described for the in situ interrogation of γδ T cells and phosphoantigen-presenting butyrophilin (BTN) molecules (BTN2A1 and BTN3A1) in human FFPE tissue using Opal™ tyramide signal amplification (TSA)-based mIHC. It is demonstrated that an effectively optimised Opal™-TSA 7-marker [CD3, Pan-γδ T cell receptor (TCR), granzyme B, BTN2A1, BTN3A1, tumour marker, 4’,6-diamidino-2-phenylindole (DAPI)] mIHC panel can be used to define the presence, localisation, and activation status of γδ T cells and the BTN2A1 and BTN3A1 ligands

    Identification of Tumor Antigens in Ovarian Cancers Using Local and Circulating Tumor-Specific Antibodies

    No full text
    Ovarian cancers include several disease subtypes and patients often present with advanced metastatic disease and a poor prognosis. New biomarkers for early diagnosis and targeted therapy are, therefore, urgently required. This study uses antibodies produced locally in tumor-draining lymph nodes (ASC probes) of individual ovarian cancer patients to screen two separate protein microarray platforms and identify cognate tumor antigens. The resulting antigen profiles were unique for each individual cancer patient and were used to generate a 50-antigen custom microarray. Serum from a separate cohort of ovarian cancer patients encompassing four disease subtypes was screened on the custom array and we identified 28.8% of all ovarian cancers, with a higher sensitivity for mucinous (50.0%) and serous (40.0%) subtypes. Combining local and circulating antibodies with high-density protein microarrays can identify novel, patient-specific tumor-associated antigens that may have diagnostic, prognostic or therapeutic uses in ovarian cancer

    Combination immunotherapy with nivolumab and ipilimumab in patients with rare gynecological malignancies: results of the CA209-538 clinical trial

    Get PDF
    BACKGROUND: Patients with rare cancers represent 55% of all gynecological malignancies and have poor survival outcomes due to limited treatment options. Combination immunotherapy with the anti-programmed cell death protein 1 (anti-PD-1) antibody nivolumab and the anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab has demonstrated significant clinical efficacy across a range of common malignancies, justifying evaluation of this combination in rare gynecological cancers. METHODS: This multicenter phase II study enrolled 43 patients with advanced rare gynecological cancers. Patients received induction treatment with nivolumab and ipilimumab at a dose of 3 mg/kg and 1 mg/kg, respectively, every 3 weeks for four doses. Treatment was continued with nivolumab monotherapy at 3 mg/kg every 2 weeks until disease progression or a maximum of 2 years. The primary endpoint was the proportion of patients with disease control at week 12 (complete response, partial response or stable disease (SD) by Response Evaluation Criteria In Solid Tumor V.1.1). Exploratory evaluations correlated clinical outcomes with tumor programmed death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). RESULTS: The objective response rate in the radiologically evaluable population was 36% (12/33 patients) and in the intention-to-treat population was 28% (12/43 patients), with additional 7 patients obtaining SD leading to a disease control rate of 58% and 44%, respectively. Durable responses were seen across a range of tumor histologies. Thirty-one (72%) patients experienced an immune-related adverse event (irAE) with a grade 3/4 irAE observed in seven (16%) patients. Response rate was higher among those patients with baseline PD-L1 expression (≥1% on tumor cells) but was independent of TMB. CONCLUSIONS: Ipilimumab and nivolumab combination treatment has significant clinical activity with a favorable safety profile across a range of advanced rare gynecological malignancies and warrants further investigation in these tumor types

    Using life strategies to explore the vulnerability of ecosystem services to invasion by alien plants

    No full text
    Invasive plants can have different effects of ecosystem functioning and on the provision of ecosystem services, from strongly deleterious impacts to positive effects. The nature and intensity of such effects will depend on the service and ecosystem being considered, but also on features of life strategies of invaders that influence their invasiveness as well as their influence of key processes of receiving ecosystems. To address the combined effect of these various factors we developed a robust and efficient methodological framework that allows to identify areas of possible conflict between ecosystem services and alien invasive plants, considering interactions between landscape invasibility and species invasiveness. Our framework combines the statistical robustness of multi-model inference, efficient techniques to map ecosystem services, and life strategies as a functional link between invasion, functional changes and potential provision of services by invaded ecosystems. The framework was applied to a test region in Portugal, for which we could successfully predict the current patterns of plant invasion, of ecosystem service provision, and finally of probable conflict (expressing concern for negative impacts, and value for positive impacts on services) between alien species richness (total and per plant life strategy) and the potential provision of selected services. Potential conflicts were identified for all combinations of plant strategy and ecosystem service, with an emphasis for those concerning conflicts with carbon sequestration, water regulation and wood production. Lower levels of conflict were obtained between invasive plant strategies and the habitat for biodiversity supporting service. The added value of the proposed framework in the context of landscape management and planning is discussed in perspective of anticipation of conflicts, mitigation of negative impacts, and potentiation of positive effects of plant invasions on ecosystems and their services
    corecore