3,228 research outputs found
The application of a VUV Fourier transform spectrometer and synchrotron radiation source to measurements of: II. The δ(1,0) band of NO
Line-by-line photoabsorption cross-sections of the NO δ(1,0) band were measured with the VUV Fourier transform spectrometer from Imperial College, London, using synchrotron radiation at Photon Factory, KEK, Japan, as a continuum light source. The analysis of the NO δ(1,0) band provides accurate rotational line positions and term values as well as the photoabsorption cross-sections. The molecular constants of the C(1)2 II level are found to be T0 = 54 690.155±0.03 cm–1, Bv = 1.944 06±0.000 62 cm–1, Dv = (5.91±0.42)×10–5 cm–1, AD = –0.0187±0.0050 cm–1, p = –0.0189±0.0037 cm–1, and q = –0.015 21±0.000 20 cm–1. The sum of the line strengths for all rotational transitions of the NO δ(1,0) band is determined as 4.80×10–15 cm2 cm–1, corresponding to a band oscillator strength of 0.0054±0.0003.published_or_final_versio
The application of a VUV Fourier transform spectrometer and synchrotron radiation source to measurements of: I. the β(9,0) band of NO
State-of-the-art models of the vacuum ultraviolet (VUV) absorbing properties of the atmosphere call for absorption cross sections with detail on the scale of the Doppler widths. As a consequence, spectroscopic data at resolving powers of the order of 10 6 are needed. To meet these requirements in the vacuum ultraviolet region, we have used the VUV Fourier transform spectrometer from Imperial College, London, at the synchrotron radiation facility at Photon Factory, KEK, Japan, to measure photoabsorption cross sections of NO from 195 to 160 nm, and of O 2 from 185 to 175 nm. The analysis of the β(9,0) band (B 2Π r-X 2Π r) of NO provides accurate rotational line positions and term values. Molecular constants of the B(9) 2Π level are T 0=54205.097±0.012cm -1, A=45.320±0.021cm -1, B υ=1.01672±0.00016cm -1, D υ=(10.61±0.32)×10 -6cm -1, and A D=0.00122±0.00011cm -1. The rotational line strengths and the branching ratios are also presented. The band oscillator strength is obtained as f=2.65×10 -4. © 1998 American Institute of Physics.published_or_final_versio
SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1
BACKGROUND
We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown.
METHODS
A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer.
RESULTS
Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53.
CONCLUSION
Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity
Greenland ice sheet surface mass loss: recent developments in observation and modeling
Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still
poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss
Higgs Boson Masses in the Complex NMSSM at One-Loop Level
The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM)
with a Higgs sector containing five neutral and two charged Higgs bosons allows
for a rich phenomenology. In addition, the plethora of parameters provides many
sources of CP violation. In contrast to the Minimal Supersymmetric Extension,
CP violation in the Higgs sector is already possible at tree-level. For a
reliable understanding and interpretation of the experimental results of the
Higgs boson search, and for a proper distinction of Higgs sectors provided by
the Standard Model or possible extensions, the Higgs boson masses have to be
known as precisely as possible including higher-order corrections. In this
paper we calculate the one-loop corrections to the neutral Higgs boson masses
in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed
renormalization scheme based on on-shell and conditions. We study
various scenarios where we allow for tree-level CP-violating phases in the
Higgs sector and where we also study radiatively induced CP violation due to a
non-vanishing phase of the trilinear coupling in the stop sector. The
effects on the Higgs boson phenomenology are found to be significant. We
furthermore estimate the theoretical error due to unknown higher-order
corrections by both varying the renormalization scheme of the top and bottom
quark masses and by adopting different renormalization scales. The residual
theoretical error can be estimated to about 10%
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
- …
