44 research outputs found
Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study
<p>Abstract</p> <p>Background</p> <p>The epidemiology of meningococcal meningitis in the African meningitis belt is characterised by seasonality, localised epidemics and epidemic waves. To facilitate research and surveillance, we aimed to develop a definition for localised epidemics to be used in real-time surveillance based on weekly case reports at the health centre level.</p> <p>Methods</p> <p>We used national routine surveillance data on suspected meningitis from January 2004 to December 2008 in six health districts in western and central Burkina Faso. We evaluated eight thresholds composed of weekly incidence rates at health centre level for their performance in predicting annual incidences of 0.4%and 0.8% in health centre areas. The eventually chosen definition was used to describe the spatiotemporal epidemiology and size of localised meningitis epidemics during the included district years.</p> <p>Results</p> <p>Among eight weekly thresholds evaluated, a weekly incidence rate of 75 cases per 100,000 inhabitants during at least two consecutive weeks with at least 5 cases per week had 100% sensitivity and 98% specificity for predicting an annual incidence of at least 0.8% in health centres. Using this definition, localised epidemics were identified in all but one years during 2004-2008, concerned less than 10% of the districts' population and often were geographically dispersed. Where sufficient laboratory data were available, localised epidemics were exclusively due to meningococci.</p> <p>Conclusions</p> <p>This definition of localised epidemics a the health centre level will be useful for risk factor and modelling studies to understand the meningitis belt phenomenon and help documenting vaccine impact against epidemic meningitis where no widespread laboratory surveillance exists for quantifying disease reduction after vaccination.</p
Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma
This work is licensed under a Creative Commons Attribution 4.0 International License.A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma
Implementation of infection control in health facilities in Arua district, Uganda: a cross-sectional study
Role of endopeptidases in peptidoglycan synthesis mediated by alternative cross-linking enzymes in <em>Escherichia coli</em>
Label-free monitoring of 3D cortical neuronal growth <i>in vitro</i> using optical diffraction tomography
AbstractThe highly complex central nervous systems of mammals are often studied using three-dimensional (3D) in vitro primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points. Thus, we propose a label-free monitoring method for 3D neuronal growth based on refractive index tomograms obtained by optical diffraction tomography. The 3D morphology of the neurons was clearly visualized, and the developmental processes of neurite outgrowth in 3D spaces were analyzed for individual neurons.Abstract Figure</jats:sec
Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography
The highly complex central nervous systems of mammals are often studied using three-dimensional (3D) in vitro primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points. Thus, we propose a label-free monitoring method for 3D neuronal growth based on refractive index tomograms obtained by optical diffraction tomography. The 3D morphology of the neurons was clearly visualized, and the developmental processes of neurite outgrowth in 3D spaces were analyzed for individual neurons.</jats:p
Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography
The highly complex central nervous systems of mammals are often studied using three-dimensional (3D) in vitro primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points. Thus, we propose a label-free monitoring method for 3D neuronal growth based on refractive index tomograms obtained by optical diffraction tomography. The 3D morphology of the neurons was clearly visualized, and the developmental processes of neurite outgrowth in 3D spaces were analyzed for individual neurons.
