30 research outputs found
Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates
The widespread decline of seagrass beds within the Mediterranean often results in the replacement of seagrasses by opportunistic green algae of the Caulerpa family. Because Caulerpa beds have a different height, stiffness and density compared to seagrasses, these changes in habitat type modify the interaction of the seafloor with hydrodynamics, influencing key processes such as sediment resuspension and particle trapping. Here, we compare the effects on hydrodynamics and particle trapping of Caulerpa taxifolia, C. racemosa, and C. prolifera with the Mediterranean seagrasses Cymodocea nodosa and Posidonia oceanica. All macrophyte canopies reduced near-bed volumetric flow rates compared to bare sediment, vertical profiles of turbulent kinetic energy revealed peak values around the top of the canopies, and maximum values of Reynolds stress increased by a factor of between 1.4 (C. nodosa) and 324.1 (P. oceanica) when vegetation was present. All canopies enhanced particle retention rates compared to bare sediment. The experimental C. prolifera canopy was the most effective at particle retention (m2 habitat); however, C. racemosa had the largest particle retention capacity per structure surface area. Hence, in terms of enhancing particle trapping and reducing hydrodynamic forces at the sediment surface, Caulerpa beds provided a similar or enhanced function compared to P.oceanica and C. nodosa. However, strong seasonality in the leaf area index of C. racemosa and C. taxifolia within the Mediterranean, combined with a weak rhizome structure, suggests that sediments maybe unprotected during winter storms, when most erosion occurs. Hence, replacement of seagrass beds with Caulerpa is likely to have a major influence on annual sediment dynamics at ecosystem scales.This research was funded by the European Network of Excellence ‘‘Marine Biodiversity and Ecosystem Function’’ (MarBEF); FP6, EC contract no. 505446 and a grant from the Fundacio ´n BBVA. EPM was supported by a European Union Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, the Spanish national project EVAMARIA (CTM2005-00395/MAR) and the regional government of Andalusia project FUNDIV(P07-RNM-2516)
Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns
A higher effort-based paradigm in physical activity and exercise for public health: making the case for a greater emphasis on resistance training
It is well known that physical activity and exercise is associated with a lower risk of a range of morbidities and all-cause mortality. Further, it appears that risk reductions are greater when physical activity and/or exercise is performed at a higher intensity of effort. Why this may be the case is perhaps explained by the accumulating evidence linking physical fitness and performance outcomes (e.g. cardiorespiratory fitness, strength, and muscle mass) also to morbidity and mortality risk. Current guidelines about the performance of moderate/vigorous physical activity using aerobic exercise modes focuses upon the accumulation of a minimum volume of physical activity and/or exercise, and have thus far produced disappointing outcomes. As such there has been increased interest in the use of higher effort physical activity and exercise as being potentially more efficacious. Though there is currently debate as to the effectiveness of public health prescription based around higher effort physical activity and exercise, most discussion around this has focused upon modes considered to be traditionally ‘aerobic’ (e.g. running, cycling, rowing, swimming etc.). A mode customarily performed to a relatively high intensity of effort that we believe has been overlooked is resistance training. Current guidelines do include recommendations to engage in ‘muscle strengthening activities’ though there has been very little emphasis upon these modes in either research or public health effort. As such the purpose of this debate article is to discuss the emerging higher effort paradigm in physical activity and exercise for public health and to make a case for why there should be a greater emphasis placed upon resistance training as a mode in this paradigm shift
Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga province, southern Spain
Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated one
