961 research outputs found

    Intraoperative contrast-enhanced sonography of bowel blood flow: preliminary experience

    Get PDF
    The potential to predict, and therefore avoid, anastomotic failure has eluded generations of colon and rectal surgeons to date. A reliable, reproducible method of assessing bowel blood flow therefore would be of enormous potential clinical relevance. To our knowledge, intraoperative contrast-enhanced sonography of the bowel has not been performed previously. We present our study assessing the feasibility of using contrast-enhanced sonography to study bowel perfusion intraoperatively. We studied 8 patients (4 male and 4 female) with an age range of 52 to 81 years who underwent colorectal surgery (right hemicolectomies, n = 3; Hartmann procedure, n = 1; anterior resections, n = 2; and bowel resections with ileocolic anastomoses, n = 2). A 5-mL bolus of a sulfur hexafluoride contrast agent solution was injected before and after vascular ligation with simultaneous noncompression ultrasound scanning directly over the large bowel. The patients were followed clinically to assess for leaks. Contrast-enhanced sonographic time-intensity curves were generated for the time to peak and maximum amplitude. Moderate interobserver agreement was shown for the time to peak (κ = 0.50) and maximum amplitude (κ = 0.42), and moderate intraobserver agreement was shown for the time to peak (κ= 0.53) and maximum amplitude (κ= 0.53). No significant differences were shown between the time to peak (P = .28) and maximum amplitude (P = .49) for the preligation and postligation scans. To our knowledge, intraoperative contrast-enhanced sonography of the bowel has not been performed previously. We have shown the technique to be feasible with good intraobserver and interobserver agreement. Further work is ongoing to optimize the technique and assess its use in predicting anastomotic breakdown.published_or_final_versio

    The capability of B-RISK zone modelling software to simulate BRE multiple vehicle fire spread test

    Get PDF
    Building Research Establishment (BRE), United Kingdom have carried out several full-scale experiments of vehicle fire as to address the fire spread between vehicles. Thus, this paper aims to investigate the capability of the B-RISK zone modelling software to simulate the BRE multiple vehicle fire spread test. Using the information gathered from the work by BRE, series of simulations have been conducted. The results of the simulations are compared with the results from the experiments. Analysis shows that the predicted results from the B-RISK simulations give slightly faster time of ignition to the ones obtained using hand calculation. This could be due to B-RISK includes the radiation effect from the underside of the hot upper layer. As a conclusion, the analysis shows that using the B-RISK simulation software with additional radiation effects does not improve the result as compared to using the hand calculation considering the level of uncertainties which required to be assumed on some input parameters e.g. HRRPUA, heat of combustion, and/or latent heat of gasification

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Astraeus: Exploring Titan's lakes, surface, and atmosphere

    Get PDF
    Titan, Saturn's largest moon, supports a dense atmosphere, numerous bodies of liquid on its surface, and as a richly organic world is a primary focus for understanding the processes that support the development of life. In-situ exploration of the body's equatorial regions, something begun by the Huygens lander in the early 2000s, is soon set to continue with the upcoming Dragonfly quadcopter. This commitment of NASA to flying on the body marks a bold step towards more adventurous mission architectures, and following the mission's completion, numerous other opportunities will be available where mission designers can go further and leverage hundreds of years of human experience traversing surface, atmosphere and liquid on Earth to begin the first in-situ exploration of Titan's polar lakes. This mission offers a distributed architecture across Titan's orbit, upper atmosphere, near surface atmosphere, and surface lakes

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Protein disulphide isomerase-assisted functionalization of proteinaceous substrates

    Get PDF
    Protein disulphide isomerase (PDI) is an enzyme that catalyzes thiol-disulphide exchange reactions among a broad spectrum of substrates, including proteins and low-molecular thiols and disulphides. As the first protein-folding catalyst reported, the study of PDI has mainly involved the correct folding of several cysteine-containing proteins. Its application on the functionalization of protein-based materials has not been extensively reported. Herein, we review the applications of PDI on the modification of proteinaceous substrates and discuss its future potential. The mechanism involved in PDI functionalization of fibrous protein substrates is discussed in detail. These approaches allow innovative applications in textile dyeing and finishing, medical textiles, controlled drug delivery systems and hair or skin care products.We thank to FCT 'Fundacao para a Ciencia e Tecnologia' (scholarship SFRH/BD/38363/2007) for providing Margarida Fernandes the grant for PhD studies

    Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

    Get PDF
    YesN-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.University of Malaya High Impact Research (HIR) Grant (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, no. H-50001-A000027) given to K.G.C. and National Natural Science Foundation of China (no. 81260481) given to H.W
    corecore