611 research outputs found

    One-flow Syntheses of Diverse Heterocyclic Furan Chemicals Directly from Fructose via Tandem Transformation Platform

    Get PDF
    The sustainable green chemistry associated with lignocellulosic biomass is of current interest for producing various chemical feedstocks via multi-step transformation processes. Here we introduce a chemical platform system for the multicomponent cascade transformation of natural lignocellulosic biomass resources. We demonstrate the concept by developing an integrated continuous two-step microfluidic system as a tandem transformation platform for direct conversion of fructose to diverse furan chemicals with excellent yields up to 99% via decarbonylation, etherification, oxidation and hydrogenolysis of a 5-hydroxymethylfurfural (HMF) intermediate. A sequential two-step process is utilized to complete the dehydration of fructose in the surface acid catalyst at 150 degrees C for 6 min, which is followed by the four types of HMF conversion in a binary or ternary phase to produce furfuryl alcohol (94% yield), 5-ethoxymethylfurfural (99%), 2,5-diformylfuran (82%) and 2,5-dimethylfuran (90%) with magnetic-based heterogeneous catalysts at 70-150 degrees C for 6-60 min. This innovative tandem microfluidic platform enables precise control of the reaction temperature and time for each individual biomass conversion step in a one-flow manner with no separation and purification steps for intermediates and catalysts.112016Ysciescopu

    Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions

    Full text link
    Conditions under which compression occurs and collective expansion develops in energetic reactions of heavy nuclei, are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal. As impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra and mean energies of different particles emitted into any one direction, and further particle yields. Both the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins

    Get PDF
    Electronic skins (e-skins) with high sensitivity to multidirectional mechanical stimuli are crucial for healthcare monitoring devices, robotics, and wearable sensors. In this study, we present piezoresistive e-skins with tunable force sensitivity and selectivity to multidirectional forces through the engineered microstructure geometries (i.e., dome, pyramid, and pillar). Depending on the microstructure geometry, distinct variations in contact area and localized stress distribution are observed under different mechanical forces (i.e., normal, shear, stretching, and bending), which critically affect the force sensitivity, selectivity, response/relaxation time, and mechanical stability of e-skins. Microdome structures present the best force sensitivities for normal, tensile, and bending stresses. In particular, microdome structures exhibit extremely high pressure sensitivities over broad pressure ranges (47,062 kPa(-1) in the range of < 1 kPa, 90,657 kPa(-1) in the range of 1-10 kPa, and 30,214 kPa(-1) in the range of 10-26 kPa). On the other hand, for shear stress, micropillar structures exhibit the highest sensitivity. As proof-of-concept applications in healthcare monitoring devices, we show that our e-skins can precisely monitor acoustic waves, breathing, and human artery/carotid pulse pressures. Unveiling the relationship between the microstructure geometry of e-skins and their sensing capability would provide a platform for future development of high-performance microstructured e-skins

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    A Retrospective Study of Korean Adults With Food Allergy: Differences in Phenotypes and Causes

    Get PDF
    PURPOSE: Increasing in prevalence, food allergy (FA) is becoming an important public health concern. In Korean adults, however, clinical phenotypes and causes of FA have not been studied. We aimed to study common causative allergens and clinical manifestations of FA in Korean adults. METHODS: This study was conducted as a retrospective review of medical records for 95 patients (>/=19 years old) diagnosed with FA from September 2014 to August 2015 at a single university hospital. RESULTS: In the 95 patients, 181 FA events were recorded. The mean age of first onset of FA symptoms was 34.7+/-15.8 years. The most frequent causative food was seafood (34.8%): shrimp and crab allergies ranked highest, regardless of age and sex. Among all FA events, there were 47 (26.0%) cases of anaphylaxis and 26 (14.4%) cases of oral allergy syndrome (OAS). Seafood (51.1%) was the most frequent cause of anaphylaxis, followed by grains (14.9%). Most OAS cases were associated with fruits (95.7%). The frequency of fruit-induced FA was significantly higher in males than in females (23.0% vs 8.4%, P=0.011). While no cases of vegetables-induced FA were noted in younger individuals (19 to 30 years), vegetables accounted for 20.5% of FA symptoms in older subjects (>/=51 years, P<0.001). Allergic rhinitis (44.2%) and drug allergy (20.0%) were major comorbidities associated with FA. Overall, 29 FA events had cofactors, of which 10 were combined with exercise. CONCLUSIONS: The major causes of FA in Korean adults were crustacean, fruits, and grains. Interestingly, the clinical manifestations of FA and demographics varied according to type of food allergen

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe
    corecore