83 research outputs found

    Challenging the diagnosis of Cystic Fibrosis in a patient carrying the 186-8T/C allelic variant in the CF Transmembrane Conductance Regulator gene

    Get PDF
    BACKGROUND: This report describe for the first time a clinical case with a CFTR allelic variant 186-8T/C (c.54-8 T/C) in intron 1 of CFTR and underline the importance of applying a combination of genetic and functional tests to establish or exclude a diagnosis of Cystic Fibrosis. In this case the diagnostic algorithm proposed for CF has been successfully applied at our Center and previous CF diagnosis assigned in a different Center was not confirmed.Case report: A 38 year-old Italian woman had been treated as affected by CF since 2010, following diagnosis based on sweat tests (reported values of 73 and 57 mEq/L) and a clinical history consistent with CF. No mutations were identified by first level of genetic analysis. Afterwards the patient referred to our center for assessing the relevance of these findings. The genetic variant 186-8T/C (c.54-8 T/C) in intron 1 of the CFTR gene was detected by sequencing. Low-level interstitial-alveolar infiltration was recorded by high-resolution computerized tomography. Lung function was normal and sputum and Broncho Alveolar Lavage cultures resulted bacteriologically negative. Sweat chloride levels was re-assessed and resulted with values of 57 and 35 mEq/L, with a borderline range between 40 and 60 mEq/L. Nasal Potential Difference measurements resulted in three reliable measurements consistent with a non-CF phenotype. Differential diagnosis with ciliary dyskinesia was excluded, as was exon 2 skipping of CFTR gene that might have caused a CFTR functional defect. Furthermore, single cell fluorescence analysis in response to cAMP agonists performed in patient's monocytes overlapped those obtained in healthy donors. CONCLUSION: We concluded that this patient was not affected by CF. This case highlights the need for referrals to highly specialized centers and the importance of combined functional and genetic tests in making a correct diagnosis. Moreover, we confirmed a correlation between NPD tracings and cell depolarization in monocytes providing a rationale for proposing the use of leukocytes as a potential support for CF diagnosis

    The plasticity of Plasmodium falciparum gametocytaemia in relation to age in Burkina Faso

    Get PDF
    BACKGROUND: Malaria transmission depends on the presence of gametocytes in the peripheral blood. In this study, the age-dependency of gametocytaemia was examined by microscopy and molecular tools. METHODS: A total of 5,383 blood samples from individuals of all ages were collected over six cross sectional surveys in Burkina Faso. One cross-sectional study used quantitative nucleic acid sequence based amplification (QT-NASBA) for parasite quantification (n = 412). The proportion of infections with concurrent gametocytaemia and median proportion of gametocytes among all parasites were calculated. RESULTS: Asexual parasite prevalence and gametocyte prevalence decreased with age. Gametocytes made up 1.8% of the total parasite population detected by microscopy in the youngest age group. This proportion gradually increased to 18.2% in adults (p < 0.001). Similarly, gametocytes made up 0.2% of the total parasite population detected by QT-NASBA in the youngest age group, increasing to 5.7% in adults (p < 0.001). This age pattern in gametocytaemia was also evident in the proportion of gametocyte positive slides without concomitant asexual parasites which increased from 13.4% (17/127) in children to 45.6% (52/114) in adults (OR 1.55, 95% CI 1.38-1.74, p < 0.001). CONCLUSIONS: The findings of this study suggest that although gametocytes are most commonly detected in children, the proportion of asexual parasites that is committed to develop into gametocytes may increase with age. These findings underscore the importance of adults for the human infectious reservoir for malaria

    Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal

    Get PDF
    Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved

    The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa

    Get PDF
    Plasmodium falciparum malaria is a serious tropical disease that causes more than one million deaths each year, most of them in Africa. It is transmitted by a range of Anopheles mosquitoes and the risk of disease varies greatly across the continent. The "entomological inoculation rate" is the commonly-used measure of the intensity of malaria transmission, yet the methods used are currently not standardized, nor do they take the ecological, demographic, and socioeconomic differences across populations into account. To better understand the multiplicity of malaria transmission, this study examines the distribution of transmission intensity across sub-Saharan Africa, reviews the range of methods used, and explores ecological parameters in selected locations. It builds on an extensive geo-referenced database and uses geographical information systems to highlight transmission patterns, knowledge gaps, trends and changes in methodologies over time, and key differences between land use, population density, climate, and the main mosquito species. The aim is to improve the methods of measuring malaria transmission, to help develop the way forward so that we can better assess the impact of the large-scale intervention programmes, and rapid demographic and environmental change taking place across Africa

    Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease.</p> <p>Methods</p> <p>We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR.</p> <p>Results</p> <p>Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma).</p> <p>Conclusions</p> <p>The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells which give rise to hemangiosarcoma modulate their microenvironment to promote tumor growth and survival. We propose that the frequent occurrence of canine hemangiosarcoma in defined dog breeds, as well as its similarity to homologous tumors in humans, offers unique models to solve the dilemma of stem cell plasticity and whether angiogenic endothelial cells and hematopoietic cells originate from a single cell or from distinct progenitor cells.</p

    Hypermethylation of the DLC1 CpG island does not alter gene expression in canine lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study is a comparative epigenetic evaluation of the methylation status of the <it>DLC1 </it>tumor suppressor gene in naturally-occurring canine lymphoma. Canine non-Hodgkin's lymphoma (NHL) has been proposed to be a relevant preclinical model that occurs spontaneously and may share causative factors with human NHL due to a shared home environment. The canine <it>DLC1 </it>mRNA sequence was derived from normal tissue. Using lymphoid samples from 21 dogs with NHL and 7 normal dogs, the methylation status of the promoter CpG island of the gene was defined for each sample using combined bisulfite restriction analysis (COBRA), methylation-specific PCR (MSP), and bisulfite sequencing methods. Relative gene expression was determined using real-time PCR.</p> <p>Results</p> <p>The mRNA sequence of canine <it>DLC1 </it>is highly similar to the human orthologue and contains all protein functional groups, with 97% or greater similarity in functional regions. Hypermethylation of the 5' and 3' flanking regions of the promoter was statistically significantly associated with the NHL phenotype, but was not associated with silencing of expression or differences in survival.</p> <p>Conclusion</p> <p>The canine <it>DLC1 </it>is constructed highly similarly to the human gene, which has been shown to be an important tumor suppressor in many forms of cancer. As in human NHL, the promoter CpG island of <it>DLC1 </it>in canine NHL samples is abnormally hypermethylated, relative to normal lymphoid tissue. This study confirms that hypermethylation occurs in canine cancers, further supporting the use of companion dogs as comparative models of disease for evaluation of carcinogenesis, biomarker diagnosis, and therapy.</p

    Intracellular Trafficking of Guanylate-Binding Proteins Is Regulated by Heterodimerization in a Hierarchical Manner

    Get PDF
    Guanylate-binding proteins (GBPs) belong to the dynamin family of large GTPases and represent the major IFN-γ-induced proteins. Here we systematically investigated the mechanisms regulating the subcellular localization of GBPs. Three GBPs (GBP-1, GBP-2 and GBP-5) carry a C-terminal CaaX-prenylation signal, which is typical for small GTPases of the Ras family, and increases the membrane affinity of proteins. In this study, we demonstrated that GBP-1, GBP-2 and GBP-5 are prenylated in vivo and that prenylation is required for the membrane association of GBP-1, GBP-2 and GBP-5. Using co-immunoprecipitation, yeast-two-hybrid analysis and fluorescence complementation assays, we showed for the first time that GBPs are able to homodimerize in vivo and that the membrane association of GBPs is regulated by dimerization similarly to dynamin. Interestingly, GBPs could also heterodimerize. This resulted in hierarchical positioning effects on the intracellular localization of the proteins. Specifically, GBP-1 recruited GBP-5 and GBP-2 into its own cellular compartment and GBP-5 repositioned GBP-2. In addition, GBP-1, GBP-2 and GBP-5 were able to redirect non-prenylated GBPs to their compartment in a prenylation-dependent manner. Overall, these findings prove in vivo the ability of GBPs to dimerize, indicate that heterodimerization regulates sub-cellular localization of GBPs and underscore putative membrane-associated functions of this family of proteins

    The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells.</p> <p>Methods</p> <p>Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT<sup>®</sup>), apoptosis (SensoLyte<sup>® </sup>Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting.</p> <p>Results</p> <p>Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway.</p> <p>Conclusions</p> <p>These data demonstrate that the novel curcumin analog FLLL32 has biologic activity against OSA cell lines through inhibition of STAT3 function and expression. Future work with FLLL32 will define the therapeutic potential of this compound <it>in vivo</it>.</p

    Whole genome comparison of donor and cloned dogs

    Get PDF
    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic cell nuclear transfer produced an almost identical genome. The whole genome sequence data of donor and cloned dogs can provide a resource for further investigations on epigenetic contributions in phenotypic differences.close0
    corecore