61,017 research outputs found
Recommended from our members
View-dependent adaptive cloth simulation
This paper describes a method for view-dependent cloth simulation using dynamically adaptive mesh refinement and coarsening. Given a prescribed camera motion, the method adjusts the criteria controlling refinement to account for visibility and apparent size in the camera's view. Objectionable dynamic artifacts are avoided by anticipative refinement and smoothed coarsening. This approach preserves the appearance of detailed cloth throughout the animation while avoiding the wasted effort of simulating details that would not be discernible to the viewer. The computational savings realized by this method increase as scene complexity grows, producing a 2× speed-up for a single character and more than 4× for a small group
“Western Mediterranean” (WM) broad band network: permanent seismic monitoring at the Ibero-Maghrebian region
The “Ibero-Maghrebian” region, a western part of the Eurasia-Africa plate boundary, is a broad deformation area without a well defined plate boundary line, comprising the Southern part of the Iberian Peninsula, the Northwestern part of Africa, the Gulf of Cadiz and the Alboran Sea, with a convergence between Iberia and Africa at some mm/year (Nuvel-1A model, DeMets et al, 1994) in a NNW-SSE direction, and a dif- ferential motion at Alboran Sea area (Buforn et al, 1995). Although seismic activity is characterized by a low to moderate magnitude and shallow depth earthquakes, big events are also well documented, among others: Lisbon earthquake (1755, I0= X), Gulf of Cadiz (1969, Ms= 8.1), or, more recently Bourmedes (2003, Mw= 7.1), some them with an associated tsunami, like Lisbon or Bourmedes earthquakes. An interme- diate seismic activity is also clearly registered from Gulf of Cadiz to mid Alboran Sea (Martin Davila and Pazos, 2003), and very deep earthquakes (h> 650 km) have been registered at Granada basin (1954, M= 7.0).
In order to better study the seismic characteristics of this area, from 1996 on, ROA and the University Complutense of Madrid (UCM), with the collaboration of Geo- forschungZentrum of Potsdam (GFZ), have deployed a broad band seismic net with stations located at Southern Spain and Spanish possessions located Northern Africa,
mainly surrounding the Alboran Sea, complementing the previously installed ROA SP and LP stations. This net has been named as “Western Mediterranean net” (WM FDSN code). As net was evolving, new Institutes and stations joined WM net, such a way at present is formed by ten stations located at: San Fernando (SFS), Málaga (MALA), Cartagena (CART), and Evora (UEVO, University of Evora, Portugal) at Iberian peninsula, Mahón (MAHO) at Minorca island, three stations at Melilla (MELI), Peñón de Vélez-Gomera (PVLZ), and Ceuta (CEU) at Spanish villages located Northern Africa in South Alboran Sea area, and Averroes (AVE) and Ifrane (IFR) installed at Morocco mainland as a joined effort among ISRABAT (Institut Scientifique, Univer- sité Mohammed V), ROA and UCM. Most stations are collocated with permanent geodetic GPS stations (Gárate et al, 2004). Next future plans include the installation of five stations by U. Evora at Southern Portugal area, a new station at Morocco by ISRABAT, ROA and UCM and also a new station at Oran (Algeria), as a collaboration among Université d’Oran (Algeria), ROA and UCM. All them will be associated to WM net.
All WM network stations include Streckeisen STS-2 sensor, a Quanterra or Earth Data digitizer, and a SeiscomP process system (Heinloo, 2004), and all them are available in real time via phone modem or Internet, except PVLZ and CEU, which will be in short.
In this work, partly funded by the Spanish Ministry of Education and Science (MEC) through the project REN2006-10311-C03-01/02 (RISTE), we will present the present status, the next future plans and some related activities of WM net
Heterogeneous Os isotope compositions in the Kalatongke sulfide deposit, NW China: the role of crustal contamination
Re-Os isotope compositions of mantle-derived magmas are highly sensitive to crustal contamination because the crust and mantle have very different Os isotope compositions. Crustal contamination may trigger S saturation and thus the formation of magmatic Ni-Cu-(PGE) sulfide deposits. The ∼287-Ma Kalatongke norite intrusion of NW China are hosted in carboniferous tuffaceous rocks and contain both disseminated and massive sulfide mineralization. The Re-Os isotope compositions in the intrusion are highly variable. Norite and massive sulfide ores have γ Os values ranging from +59 to +160 and a Re-Os isochron age of 239 ± 51 Ma, whereas disseminated sulfide ores have γ Os values from +117 to +198 and a Re-Os isochron age of 349 ± 34 Ma. The variability of Os isotope compositions can be explained as the emplacement of two distinct magma pulses. Massive sulfide ores and barren norite in the intrusion formed from the same magma pulse, whereas the disseminated sulfide ores with more radiogenic Os isotopes formed from another magma pulse which underwent different degrees of crustal contamination. Re-Os isotopes may not be suitable for dating sulfide-bearing intrusions that underwent variable degrees of crustal contamination to form magmatic sulfide deposits. © 2012 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201
Higgs boson enhancement effects on squark-pair production at the LHC
We study the Higgs boson effects on third-generation squark-pair production
in proton-proton collision at the CERN Large Hadron Collider (LHC), including
\Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial
enhancement can be obtained through s-channel exchanges of Higgs bosons at
large , at which the enhancement mainly comes from , , and initial states. We compute the complete set of electroweak
(EW) contributions to all production channels. This completes previous
computations in the literature. We found that the EW contributions can be
significant and can reach up to 25% in more general scenarios and at the
resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable
or even higher than the PDF uncertainties and so must be included in any
reliable analysis. A full analytical computation of all the EW contributions is
presented.Comment: 23 pages, 7 figures, 1 tabl
A Generalization of the Goldberg-Sachs Theorem and its Consequences
The Goldberg-Sachs theorem is generalized for all four-dimensional manifolds
endowed with torsion-free connection compatible with the metric, the treatment
includes all signatures as well as complex manifolds. It is shown that when the
Weyl tensor is algebraically special severe geometric restrictions are imposed.
In particular it is demonstrated that the simple self-dual eigenbivectors of
the Weyl tensor generate integrable isotropic planes. Another result obtained
here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat
manifold of (2,2) signature the manifold must be Calabi-Yau or symplectic and
admits a solution for the source-free Einstein-Maxwell equations.Comment: 14 pages. This version matches the published on
The Core of the Participatory Budgeting Problem
In participatory budgeting, communities collectively decide on the allocation
of public tax dollars for local public projects. In this work, we consider the
question of fairly aggregating the preferences of community members to
determine an allocation of funds to projects. This problem is different from
standard fair resource allocation because of public goods: The allocated goods
benefit all users simultaneously. Fairness is crucial in participatory decision
making, since generating equitable outcomes is an important goal of these
processes. We argue that the classic game theoretic notion of core captures
fairness in the setting. To compute the core, we first develop a novel
characterization of a public goods market equilibrium called the Lindahl
equilibrium, which is always a core solution. We then provide the first (to our
knowledge) polynomial time algorithm for computing such an equilibrium for a
broad set of utility functions; our algorithm also generalizes (in a
non-trivial way) the well-known concept of proportional fairness. We use our
theoretical insights to perform experiments on real participatory budgeting
voting data. We empirically show that the core can be efficiently computed for
utility functions that naturally model our practical setting, and examine the
relation of the core with the familiar welfare objective. Finally, we address
concerns of incentives and mechanism design by developing a randomized
approximately dominant-strategy truthful mechanism building on the exponential
mechanism from differential privacy
A test of general relativity from the three-dimensional orbital geometry of a binary pulsar
Binary pulsars provide an excellent system for testing general relativity
because of their intrinsic rotational stability and the precision with which
radio observations can be used to determine their orbital dynamics.
Measurements of the rate of orbital decay of two pulsars have been shown to be
consistent with the emission of gravitational waves as predicted by general
relativity, providing the most convincing evidence for the self-consistency of
the theory to date. However, independent verification of the orbital geometry
in these systems was not possible. Such verification may be obtained by
determining the orientation of a binary pulsar system using only classical
geometric constraints, permitting an independent prediction of general
relativistic effects. Here we report high-precision timing of the nearby binary
millisecond pulsar PSR J0437-4715, which establish the three-dimensional
structure of its orbit. We see the expected retardation of the pulse signal
arising from the curvature of space-time in the vicinity of the companion
object (the `Shapiro delay'), and we determine the mass of the pulsar and its
white dwarf companion. Such mass determinations contribute to our understanding
of the origin and evolution of neutron stars.Comment: 5 pages, 2 figure
Measuring the Accuracy of Object Detectors and Trackers
The accuracy of object detectors and trackers is most commonly evaluated by
the Intersection over Union (IoU) criterion. To date, most approaches are
restricted to axis-aligned or oriented boxes and, as a consequence, many
datasets are only labeled with boxes. Nevertheless, axis-aligned or oriented
boxes cannot accurately capture an object's shape. To address this, a number of
densely segmented datasets has started to emerge in both the object detection
and the object tracking communities. However, evaluating the accuracy of object
detectors and trackers that are restricted to boxes on densely segmented data
is not straightforward. To close this gap, we introduce the relative
Intersection over Union (rIoU) accuracy measure. The measure normalizes the IoU
with the optimal box for the segmentation to generate an accuracy measure that
ranges between 0 and 1 and allows a more precise measurement of accuracies.
Furthermore, it enables an efficient and easy way to understand scenes and the
strengths and weaknesses of an object detection or tracking approach. We
display how the new measure can be efficiently calculated and present an
easy-to-use evaluation framework. The framework is tested on the DAVIS and the
VOT2016 segmentations and has been made available to the community.Comment: 10 pages, 7 Figure
A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections
Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant
Silicon (Si) is a beneficial element for healthy growth and high and sustainable production of rice, but the mode of action of the beneficial effects has not been well understood. We carried out field trials for four years at two different locations to re-examine the effects of Si on the growth and production of rice using a low silicon rice (lsi1) mutant. The mutant accumulated much lower Si at each growth stage compared with the wild-type rice (Oryza sativa L. cv Oochikara), but there was no difference in the accumulation of other nutrients including N, P, and K. Measurements at different growth stages showed that low Si in the mutant hardly affected the tiller number, chlorophyll content (SPAD value), and root growth. The plant height and shoot dry weight of the wild-type rice were slightly higher than those of the mutant at a later growth stage, but the difference was not significant between the two lines. However, grain yield was reduced by 79-98%, depending on year, due to a low Si accumulation in the mutant, which showed the largest effect of Si on rice production among all studies reported so far. Among the yield components, the percentage of filled spikelets was mostly affected, being only 13.9% of the wild-type rice in the mutant. The grain color of the mutant became brown because of excessive transpiration and infection of pathogens. These results indicate that Si increases rice yield mainly by enhancing the fertility of spikelets.</p
- …
