159 research outputs found
Design Considerations for Tumor-Targeted Nanoparticles
Inorganic/organic hybrid nanoparticles are potentially useful in biomedicine, but to avoid non-specific background fluorescence and long-term toxicity, they need to be cleared from the body within a reasonable timescale1. Previously, we have shown that rigid spherical nanoparticles such as quantum dots can be cleared by the kidneys if they have a hydrodynamic diameter of approximately 5.5 nm and a zwitterionic surface charge2. Here, we show that quantum dots functionalized with high-affinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5–10 ligands per quantum dot for renal clearance. Animal models of prostate cancer and melanoma show receptor-specific imaging and renal clearance within 4 h post-injection. This study suggests a set of design rules for the clinical translation of targeted nanoparticles that can be eliminated through the kidneys.National Science Foundation (U.S.) (NSF-0070319)National Institutes of Health (U.S.) (NIH GM68762)National Institutes of Health (U.S.) (NIH grant no. R33-EB-000673)National Institutes of Health (U.S.) ( NIH grant no. R01-CA-115296)National Institutes of Health (U.S.) (MIT-Harvard NanoMedical Consortium (1U54-CA119349, a Center of Cancer Nanotechnology Excellence))Bank of AmericaMedical Foundation, inc. (Charles A. King Trust Postdoctoral Research Fellowship Program)cance
Selective Serotonin Reuptake Inhibitor (SSRI) Antidepressants in Pregnancy and Congenital Anomalies: Analysis of Linked Databases in Wales, Norway and Funen, Denmark
Background: Hypothesised associations between in utero exposure to selective serotonin reuptake inhibitors (SSRIs) and congenital anomalies, particularly congenital heart defects (CHD), remain controversial. We investigated the putative teratogenicity of SSRI prescription in the 91 days either side of first day of last menstrual period (LMP). Methods and Findings: Three population-based EUROCAT congenital anomaly registries- Norway (2004–2010), Wales (2000–2010) and Funen, Denmark (2000–2010)—were linked to the electronic healthcare databases holding prospectively collected prescription information for all pregnancies in the timeframes available. We included 519,117 deliveries, including foetuses terminated for congenital anomalies, with data covering pregnancy and the preceding quarter, including 462,641 with data covering pregnancy and one year either side. For SSRI exposures 91 days either side of LMP, separately and together, odds ratios with 95% confidence intervals (ORs, 95%CI) for all major anomalies were estimated. We also explored: pausing or discontinuing SSRIs preconception, confounding, high dose regimens, and, in Wales, diagnosis of depression. Results were combined in meta-analyses. SSRI prescription 91 days either side of LMP was associated with increased prevalence of severe congenital heart defects (CHD) (as defined by EUROCAT guide 1.3, 2005) (34/12,962 [0.26%] vs. 865/506,155 [0.17%] OR 1.50, 1.06–2.11), and the composite adverse outcome of 'anomaly or stillbirth' (473/12962, 3.65% vs. 15829/506,155, 3.13%, OR 1.13, 1.03–1.24). The increased prevalence of all major anomalies combined did not reach statistical significance (3.09% [400/12,962] vs. 2.67% [13,536/506,155] OR 1.09, 0.99–1.21). Adjusting for socio-economic status left ORs largely unchanged. The prevalence of anomalies and severe CHD was reduced when SSRI prescriptions were stopped or paused preconception, and increased when >1 prescription was recorded, but differences were not statistically significant. The dose-response relationship between severe CHD and SSRI dose (meta-regression OR 1.49, 1.12–1.97) was consistent with SSRI-exposure related risk. Analyses in Wales suggested no associations between anomalies and diagnosed depression. Conclusion: The additional absolute risk of teratogenesis associated with SSRIs, if causal, is small. However, the high prevalence of SSRI use augments its public health importance, justifying modifications to preconception care
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
A retrospective population-based study of childhood hospital admissions with record linkage to a birth defects registry
<p>Abstract</p> <p>Background</p> <p>Using population-based linked records of births, deaths, birth defects and hospital admissions for children born 1980–1999 enables profiles of hospital morbidity to be created for each child.</p> <p>Methods</p> <p>This is an analysis of a state-based registry of birth defects linked to population-based hospital admission data. Transfers and readmissions within one day could be taken into account and treated as one episode of care for the purposes of analyses (N = 485,446 children; 742,845 non-birth admissions).</p> <p>Results</p> <p>Children born in Western Australia from 1980–1999 with a major birth defect comprised 4.6% of live births but 12.0% of non-birth hospital admissions from 1980–2000. On average, the children with a major birth defect remained in hospital longer than the children in the comparison group for the same diagnosis. The mean and median lengths of stay (LOS) for admissions before the age of 5 years have decreased for all children since 1980. However, the mean number of admissions per child admitted has remained constant at around 3.8 admissions for children with a major birth defect and 2.2 admissions for all other children.</p> <p>Conclusion</p> <p>To gain a true picture of the burden of hospital-based morbidity in childhood, admission records need to be linked for each child. We have been able to do this at a population level using birth defect cases ascertained by a birth defects registry. Our results showed a greater mean LOS and mean number of admissions per child admitted than previous studies. The results suggest there may be an opportunity for the children with a major birth defect to be monitored and seen earlier in the primary care setting for common childhood illnesses to avoid hospitalisation or reduce the LOS.</p
Vector-Virus Mutualism Accelerates Population Increase of an Invasive Whitefly
The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic, depending on the species involved. This variation in relationships may affect the process of biological invasion and the displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late 1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV) and Tomato yellow leaf curl China virus (TYLCCNV) are two whitefly-transmitted begomoviruses that have become widespread recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy, TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2 and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses associated with this vector
An Essential Role of the Cytoplasmic Tail of CXCR4 in G-Protein Signaling and Organogenesis
CXCR4 regulates cell proliferation, enhances cell survival and induces chemotaxis, yet molecular mechanisms underlying its signaling remain elusive. Like all other G-protein coupled receptors (GPCRs), CXCR4 delivers signals through G-protein-dependent and -independent pathways, the latter involving its serine-rich cytoplasmic tail. To evaluate the signaling and biological contribution of this G-protein-independent pathway, we generated mutant mice that express cytoplasmic tail-truncated CXCR4 (ΔT) by a gene knock-in approach. We found that ΔT mice exhibited multiple developmental defects, with not only G-protein-independent but also G-protein-dependent signaling events completely abolished, despite ΔT's ability to still associate with G-proteins. These results reveal an essential positive regulatory role of the cytoplasmic tail in CXCR4 signaling and suggest the tail is crucial for mediating G-protein activation and initiating crosstalk between G-protein-dependent and G-protein-independent pathways for correct GPCR signaling
Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration
Background: Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. Methodology/Principal Findings: We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. Conclusions/Significance: In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1
Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit
The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory
Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation
Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood.The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin.Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes
Intramolecular Cohesion of Coils Mediated by Phenylalanine–Glycine Motifs in the Natively Unfolded Domain of a Nucleoporin
The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature large, natively unfolded domains with phenylalanine–glycine repeats (FG domains). These domains of nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results showed that its FG motifs function as intramolecular cohesion elements that impart order to the FG domain and compact its ensemble of structures into native premolten globular configurations. At the NPC, the FG motifs of nucleoporins may exert this cohesive effect intermolecularly as well as intramolecularly to form a malleable yet cohesive quaternary structure composed of highly flexible polypeptide chains. Dynamic shifts in the equilibrium or competition between intra- and intermolecular FG motif interactions could facilitate the rapid and reversible structural transitions at the NPC conduit needed to accommodate passing karyopherin–cargo complexes of various shapes and sizes while simultaneously maintaining a size-selective gate against protein diffusion
- …
